

B.Sc. MATHEMATICS HONOURS

(MAJOR, MINOR AND GENERAL FOUNDATION COURSES)

SYLLABUS & MODEL QUESTION PAPERS

w.e.f. 2024 admission onwards

(FYUGP Regulations 2024)

PROGRAMME OUTCOMES (PO):

At the end of the graduate programme at Sacred Heart College (Autonomous), Chalakudy, a student would:

D04	77 7 7 7 4 4 4 4 4
PO1	Knowledge Acquisition:
	Demonstrate a profound understanding of knowledge trends and their impact
	on the chosen discipline of study.
PO2	Communication, Collaboration, Inclusiveness, and Leadership:
	Become a team player who drives positive change through effective
	communication, collaborative acumen, transformative leadership, and a
	dedication to inclusivity.
PO3	Professional Skills:
	Demonstrate professional skills to navigate diverse career paths with
	confidence and adaptability.
PO4	Digital Intelligence:
	2-19-111-2-110-1-19-1-10-1
	Demonstrate proficiency in varied digital and technological tools to understand
	and interact with the digital world, thus effectively processing complex
	information.
PO5	Scientific Awareness and Critical Thinking:
	Emange of an innerative pushlom selver and importful mediator applying
	Emerge as an innovative problem-solver and impactful mediator, applying
	scientific understanding and critical thinking to address challenges and advance sustainable solutions.
DO.	
PO6	Human Values, Professional Ethics, and Societal and Environmental
	Responsibility:
	Become a responsible leader, characterized by an unwavering commitment to
	human values, ethical conduct, and a fervent dedication to the well-being of
	society and the environment.
PO7	·
PU/	Research, Innovation, and Entrepreneurship:
	Emerge as a researcher and entrepreneurial leader, forging collaborative
	partnerships with industry, academia, and communities to contribute enduring
	solutions for local, regional, and global development.

PROGRAMME SPECIFIC OUTCOMES (PSO):

At the end of the B.Sc. Mathematics Honours Programme at Sacred Heart College (Autonomous), Chalakudy, a student would:

	Programme Specific Outcome (Major)
PSO1	Advanced Mathematical Knowledge: Understand core mathematical abstract concepts/theories and demonstrate a high level of mathematical rigor and logical reasoning
PSO2	Modelling and Problem-Solving Skills: Apply mathematical techniques to solve complex problem situations across various domains and interpret the result, demonstrating critical thinking and analytical skills.
PSO3	Computational Proficiency: Apply mathematical understanding to solve problems and explicitly work out step by step either by self or by software based computational tools.
PSO4	Research Aptitude: Analyse mathematical abstract ideas effectively and present/communicate mathematical arguments and solutions in a clear and coherent manner leading to research in Mathematics
	Programme Specific Outcome (Minor)
PSO5	Mathematics Proficiency: Demonstrate a strong understanding of mathematical principles and problem solving
PSO6	Interdisciplinary Integration: Integrate Mathematics with relevant disciplines to develop more holistic approaches to solve problems, leading to innovative solutions and advancements in various fields.

MINIMUM CREDIT REQUIREMENTS OF THE DIFFERENT PATHWAYS IN THE THREE-YEAR PROGRAMME IN CUFYUGP

S1. No.	Academic Pathway		Minor/ Other Disciplines course has credits	Foundation Courses AEC: 4 MDC: 3 SEC: 3 VAC: 3	Intern- ship	Total Credits	Example
				Each course has3 credits			
1	Single Major (A)	68 (17 cours es)	24 (6 courses)	39 (13 courses)	2	133	Major: Mathematics + six courses in different disciplines in different combinations
2	Major (A) with Multiple Discipline s (B, C)	68 (17 cours es)	12 + 12 $(3 + 3 = 6$ courses)	39 (13 courses)	2	133	Major: Mathematics + Statistics and Computer Science
3	Major (A) with Minor (B)	68 (17 cours es)	24 (6 courses)	39 (13 courses)	2	133	Major: Mathematics Minor: Physics
5	Major (A) with Vocational Minor (B)	68 (17 cours es)	24 (6 courses)	39 (13 courses)	2	133	Major: Mathematics Vocational Minor: Data Analysis
5	Double Major	A: 48	-	12 + 9+9 +9	2	133	

(A, B)	(12 courses)	The 24 credits in the Minor stream are distributed between the two Majors.	Mathematics and Physics double major
	B: 44		
	(11	2 MDC, 2 SEC, 2 VAC and the	
	courses)	Internship should be in Major A.	
		Total credits in Major A should be	
		48 + 20 = 68 (nearly 50% of 133)	
		1 MDC, 1 SEC and 1 VAC should	
		be in Major B. Total credits in	
		Major B should be $44 + 9 = 53$	
		(40% of 133)	

Exit with UG Degree / Proceed to Fourth Year with 133 Credits

B.Sc. MATHEMATICS HONOURS PROGRAMME

COURSE STRUCTURE FOR PATHWAYS 1 – 4

1. Single Major

2. Major with Multiple Disciplines

3. Major with Minor

4. Major with Vocational Minor

Semester	Course Code	Course Title	Total Hours		Credits		Marks	
						Internal	External	Total
1	MAT1CJ101/ MAT1MN100	Core Course 1 in Major – Differential Calculus	60	4	4	30	70	100
		Minor Course 1	60/75	4/5	4	30	70	100
		Minor Course 2	60/75	4/ 5	4	30	70	100
	ENG1FA101 (2)	Ability Enhancement Course 1– English	30+30 (T+P)		2+1 (T+P)	25	50	75
		(with Theory T & Practicum P)						
		Ability Enhancement Course 2 – Additional Language	45	3	3	25	50	75
		Multi-Disciplinary Course 1 – Other than Major	45	3	3	25	50	75
		Total		22/ 24	21			525
2	MAT2CJ101/ MAT2MN100	Core Course 2 in Major – Integral Calculus	60	4	4	30	70	100
		Minor Course 3	60/75	4/5	4	30	70	100
		Minor Course 4	60/75	4/5	4	30	70	100
	ENG2FA103 (2)	Ability Enhancement Course 3– English	30+30	2+2	2+1	25	50	75

		Ability Enhancement Course 4 – Additional Language	45	3	3	25	50	75
		Multi-Disciplinary Course 2 — Other than Major	45	3	3	25	50	75
		Total		22/ 24	21			525
3	MAT3CJ201	Core Course 3 in Major— Multivariable Calculus (with Theory T & Practicum P)	45+30 (T+P)		3+1 (T+P)	30	70	100
	MAT3CJ202/ MAT3MN200	Core Course 4 in Major– Matrix Algebra	60	4	4	30	70	100
		Minor Course 5	60/ 75	4/5	4	30	70	100
		Minor Course 6	60/ 75	4/ 5	4	30	70	100
		Multi-Disciplinary Course 3 – Kerala Knowledge System	45	3	3	25	50	75
	ENG3FV108 (2)	Value-Added Course 1 – English	45	3	3	25	50	75
		Total		23/ 25	22			550
4	MAT4CJ203	Core Course 5 in Major –Real Analysis I	45+30	3+2	3+1	30	70	100
	MAT4CJ204	Core Course 6 in Major – Basic Linear Algebra	60	4	4	30	70	100
	MAT4CJ205	Core Course 7 in Major – Fundamentals of Python and SageMath (with Theory T & Practical P)	45+30 (T+P)		3+1 (T+P)	30	70	100

	ENG4FV109 (2)	Value-Added Course 2 – English	45	3	3	25	50	75
		Value-Added Course 3 – Additional Language	45	3	3	25	50	75
	ENG4FS111 (2)	Skill Enhancement Course 1 – English	30+30	2+2	2+1	25	50	75
		Total		24	21			525
5	MAT5CJ301	Core Course 8 in Major –Real Analysis II	45+30	3+2	3+1	30	70	100
	MAT5CJ302	Core Course 9 in Major –Abstract Algebra I	60	4	4	30	70	100
	MAT5CJ303	Core Course 10 in Major – Complex Analysis I	60	4	4	30	70	100
		Elective Course 1 in Major	60	4	4	30	70	100
		Elective Course 2 in Major	60	4	4	30	70	100
		Skill Enhancement Course 2	45	3	3	25	50	75
		Total		24	23			575
6	MAT6CJ304/ MAT8MN304	Core Course 11 in Major – Complex Analysis II (For choosing this course as minor from other departments, students must have acquainted themselves with necessary contents of MAT5CJ303, as prerequisites)	60	4	4	30	70	100
	MAT6CJ305/ MAT8MN305	Core Course 12 in Major – Elementary Number Theory	60	4	4	30	70	100

	MAT6CJ306/ MAT8MN306	Core Course 13 in Major – Methods of Differential Equations	60	4	4	30	70	100
		Elective Course 3 in Major	60	4	4	30	70	100
		Elective Course 4 in Major	60	4	4	30	70	100
	MAT6FS113	Skill Enhancement Course 3 – Data Science with Python	45	3	3	25	50	75
	MAT6CJ349	Internship in Major (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	1	50
		Total		23	25			625
Total Cre	dits for Three	Years			133			3325
7	MAT7CJ401	Core Course 14 in Major – Mathematical Analysis	45+30	3+2	3+1	30	70	100
	MAT7CJ402	Core Course 15 in Major –General Topology	45+30	3+2	3+1	30	70	100
	MAT7CJ403	Core Course 16 in Major – Abstract Algebra II	45+30	3+2	3+1	30	70	100
	MAT7CJ404	Core Course 17 in Major – Linear Algebra	45+30	3+2	3+1	30	70	100
	MAT7CJ405	Core Course 18 in Major – Discrete Mathematics	45+30	3+2	3+1	30	70	100
		Total		25	20			500
8	MAT8CJ406 / MAT8MN406	Core Course 19 in Major – Basic Measure Theory	45+30	3+2	3+1	30	70	100

MAT8CJ407 / MAT8MN407	Core Course 20 in Major – Number Theory	60	4	4	30	70	100
	Core Course 21 in Major – Differential Equations	60	4	4	30	70	100
OR (instead	of Core Courses 19 to 21	in Ma	jor)	•	1		
MAT8CJ449	Project (in Honours programme)	360*	13*	12	90	210	300
OR (instead	of Core Courses 19 to 21	in Maj	jor)	1			
MAT8CJ499	Project (in Honours with Research programme)	360*	13*	12	90	210	300
	Elective Course 5 in Major / Minor Course 7	60	4	4	30	70	100
	Elective Course 6 in Major / Minor Course 8	60	4	4	30	70	100
	Elective Course 7 in Major / Minor Course 9 / Major Course in any Other Discipline	60	4	4	30	70	100
OR (instead of Elective Course 7 in Major, in the case of Honours with Research Programme)							arch
MAT8CJ489	Research Methodology in Mathematics	60	4	4	30	70	100
	Total		25	24			600
Total	Credits for Four Years			177			4425

The teacher should have 13 hrs/week of engagement (the hours corresponding to the three core courses) in the guidance of the Project(s) in Honours programme and Honours with Research programme, while each student should have 24 hrs/week of engagement in the Project work. Total hours are given based on the student's engagement.

CREDIT DISTRIBUTION FOR PATHWAYS 1 – 4

1. Single Major

2. Major with Multiple Disciplines

3. Major with Minor

4. Major with Vocational Minor

Semester	Major		General		
	Courses	Minor	Foundation Courses	Internship/ Project	Total
		Courses		riojeci	
1	4	4 + 4	3 + 3 + 3	-	21
2	4	4 + 4	3 + 3 + 3	-	21
3	4 + 4	4 + 4	3 + 3	-	22
4	4 + 4 + 4	-	3 + 3 + 3	-	21
5	4+4+4+4+	-	3	-	23
	4				
6	4+4+4+4+	-	3	2	25
	4				
Total for	68		39		133
Three		2.4		2	
Years		24		2	
7	4 + 4 + 4 + 4 +	-	-	-	20
	4				
8	4 + 4 + 4	4 + 4 + 4	-	12*	24
	*	Instead of thr	ee Major courses	S	
Total for	88 + 12 = 100		39		177
Four Years					
		36		2	

DISTRIBUTION OF MAJOR COURSES IN Mathematics

FOR PATHWAYS 1 – 4

1. Single Major

2. Major with Multiple Disciplines

3. Major with Minor

4. Major with Vocational Minor

Semester	Course Code	Course Title	Hours/ Week	Credits
1	MAT1CJ101 /MAT1MN100	Core Course 1 in Major – Differential Calculus	4	4
2	MAT2CJ101 /MAT2MN100	Core Course 2 in Major – Integral Calculus	4	4
3	MAT3CJ201	Core Course 3 in Major – Multivariable Calculus	5	4
	MAT3CJ202 /MAT3MN200	Core Course 4 in Major – Matrix Algebra	4	4
4	MAT4CJ203	Core Course 5 in Major – Real Analysis I	5	4
	MAT4CJ204	Core Course 6 in Major – Basic Linear Algebra	4	4
	MAT4CJ205	Core Course 7 in Major – Fundamentals of Python and SageMath (P)	5	4
5	MAT5CJ301	Core Course 8 in Major – Real Analysis II	5	4
	MAT5CJ302	Core Course 9 in Major – Abstract Algebra I	4	4
	MAT5CJ303	Core Course 10 in Major – Complex Analysis I	4	4
		Elective Course 1 in Major	4	4
		Elective Course 2 in Major	4	4
6	MAT6CJ304 / MAT8MN304	Core Course 11 in Major – Complex Analysis II	4	4

	MAT6CJ305 /MAT8MN305	Core Course 12 in Major – Elementary Number Theory	4	4
	MAT6CJ306 /MAT8MN306	Core Course 13 in Major – Methods of Differential Equations	4	4
		Elective Course 3 in Major	4	4
		Elective Course 4 in Major	4	4
	MAT6CJ349	Internship in Major	-	2
	Total	for the Three Years		70
	MAT7CJ401	Core Course 14 in Major - Mathematical Analysis	5	4
	MAT7CJ402	Core Course 15 in Major – General Topology	5	4
7	MAT7CJ403	Core Course 16 in Major– Abstract Algebra II	5	4
	MAT7CJ404	Core Course 17 in Major – Linear Algebra	5	4
	MAT7CJ405	Core Course 18 in Major – Discrete Mathematics	5	4
	MAT8CJ406 / MAT8MN406	Core Course 19 in Major – Basic Measure Theory	5	4
	MAT8CJ407 / MAT8MN407	Core Course 20 in Major – Number Theory	4	4
	MAT8CJ408 / MAT8MN408	Core Course 21 in Major – Differential Equations	4	4
		OR (instead of Core Courses 19 - 21 in	Major)	
	MAT8CJ449	Project (in Honours programme)	13	12
	MAT8CJ499	Project (in Honours with Research programme)	13	12
		Elective Course 5 in Major	4	4
		Elective Course 6 in Major	4	4

		Elective Course 7 in Major	4	4
	OP (: D	
8	OR (inste	ad of Elective course 7 in Major, in Hono programme)	urs with R	esearch
	MAT8CJ489	Research Methodology in Mathematics	4	4
	Total	for the Four Years		114

ELECTIVE COURSES IN MATHEMATICS WITH SPECIALISATION

	Sl.	Course	Title			¥			Marks	
Group No.	No	Code		Semester	Total Hrs	Hrs/ Week	Credits	Internal	External	Total
1	N	ATHEMAT	TICAL COMPUT	'IN	G					
	1	MAT5EJ301 (1)	Mathematical Foundations of Computing	5	60	4	4	30	70	100
	2	MAT5EJ302 (1)	Data Structures and Algorithms	5	60	4	4	30	70	100
	3	MAT6EJ301 (1)	Numerical Analysis	6	60	4	4	30	70	100
	4	MAT6EJ302 (1)	Mathematics for Digital Images	6	60	4	4	30	70	100
	ı									
2]	DAI	ra sc	EIENC	E*		T	
	1	MAT5EJ303 (2)	Convex Optimization	5	60	4	4	30	70	100
	2	MAT5EJ304 (2)	Applied Probability	5	60	4	4	30	70	100
	3	MAT6EJ303 (2)	Machine Learning I	6	60	4	4	30	70	100
	4	MAT6EJ304 (2)	Machine Learning II	6	60	4	4	30	70	100

ELECTIVE COURSES IN MATHEMATICS WITH NO SPECIALISATION

Sl.	Course	Title	er	CS.				Marks	
No ·	Code		Semester	Total Hrs	Hrs/ Week	Credits	Internal	External	Total
1	MAT5EJ305	Higher Algebra.	5	60	4	4	30	70	100
2	MAT5EJ306	Linear Programming	5	60	4	4	30	70	100
3	MAT6EJ305	Topology of Metric Spaces.	6	60	4	4	30	70	100
4	MAT6EJ306	Introduction to Fourier Analysis	6	60	4	4	30	70	100
5	MAT8EJ401	Advanced Topology	8	60	4	4	30	70	100
6	MAT8EJ402	Partial Differential Equations	8	60	4	4	30	70	100
7	MAT8EJ403	Rings and Modules	8	60	4	4	30	70	100
8	MAT8EJ404	Coding Theory	8	60	4	4	30	70	100
9	MAT8EJ405	Foundations of Mathematics	8	60	4	4	30	70	100
10	MAT8EJ406	Operations Research	8	60	4	4	30	70	100
11	MAT8EJ407	Cryptography	8	60	4	4	30	70	100
12	MAT8EJ408	Introduction to Fractals	8	60	4	4	30	70	100

^{*}These courses are beyond the minimum course requirements and their syllabi are under preparation and will be updated soon.

**

GROUPING OF MINOR COURSES IN MATHEMATICS

2 MAT2MN101 Differential Equations and Matrix Theory 2 60 4 4 30 70 10 3 MAT3MN201 Calculus of Several Variables 3 60 4 4 30 70 10 2 Minor Group II – Foundations for Mathematical Applications 1 MAT1MN102 Differential Calculus 1 60 4 4 30 70 10 2 MAT2MN102 Calculus and Matrix Algebra 2 60 4 4 30 70 10 3 MAT3MN202 Differential Equations and Fourier Series 3 60 4 4 30 70 10 3 MAT3MN202 Differential Equations and Fourier Series 3 60 4 4 30 70 10 3 MAT3MN203 Analysis and Some Calculus 1 60 4 4 30 70 10 2 MAT2MN103 Analysis and Some Counting Principles 2 60 4 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Ma</th> <th>rks</th>										Ma	rks
1 MATIMNI01 Calculus	Group No.	SI. No.	Course Code	Title	Semester	Total Hrs	Hrs/ Week	Credits	Internal	External	Total
2 MAT2MN101 Differential Equations and Matrix Theory 3 MAT3MN201 Calculus of Several Variables 3 60 4 4 30 70 10	1			Minor Group I - Mathema	tical M	lethod	s for Sc	ience			
Matrix Theory 3 MAT3MN201 Calculus of Several 3 60 4 4 30 70 10		1	MAT1MN101	Calculus	1	60	4	4	30	70	100
Variables		2	MAT2MN101		2	60	4	4	30	70	100
1 MAT1MN102 Differential Calculus 1 60 4 4 30 70 10 2 MAT2MN102 Calculus and Matrix Algebra 2 60 4 4 30 70 10 3 MAT3MN202 Differential Equations and Fourier Series 3 60 4 4 30 70 10 3 Minor Group III - Integrated Mathematical Methods 1 MAT1MN103 Basic Calculus 1 60 4 4 30 70 10 2 MAT2MN103 Analysis and Some Counting Principles 2 60 4 4 30 70 10		3	MAT3MN201		3	60	4	4	30	70	100
1 MAT1MN102 Differential Calculus 1 60 4 4 30 70 10 2 MAT2MN102 Calculus and Matrix Algebra 2 60 4 4 30 70 10 3 MAT3MN202 Differential Equations and Fourier Series 3 60 4 4 30 70 10 3 Minor Group III - Integrated Mathematical Methods 1 MAT1MN103 Basic Calculus 1 60 4 4 30 70 10 2 MAT2MN103 Analysis and Some Counting Principles 2 60 4 4 30 70 10											
2 MAT2MN102 Calculus and Matrix Algebra 2 60 4 4 30 70 10 3 MAT3MN202 Differential Equations and Fourier Series 3 60 4 4 30 70 10 3 Minor Group III - Integrated Mathematical Methods 1 MAT1MN103 Basic Calculus 1 60 4 4 30 70 10 2 MAT2MN103 Analysis and Some Counting Principles 2 60 4 4 30 70 10	2			Minor Group II – Foundations t	for Ma	thema	tical A _I	plicat	ions		
Algebra 3 MAT3MN202 Differential Equations and Fourier Series 3 60 4 4 30 70 10		1	MAT1MN102	Differential Calculus	1	60	4	4	30	70	100
Fourier Series		2	MAT2MN102		2	60	4	4	30	70	100
1 MAT1MN103 Basic Calculus 1 60 4 4 30 70 10 2 MAT2MN103 Analysis and Some Counting Principles 2 60 4 4 30 70 10		3	MAT3MN202		3	60	4	4	30	70	100
1 MAT1MN103 Basic Calculus 1 60 4 4 30 70 10 2 MAT2MN103 Analysis and Some Counting Principles 2 60 4 4 30 70 10											
2 MAT2MN103 Analysis and Some Counting Principles 2 60 4 4 30 70 10	3			Minor Group III - Integrate	ed Mat	hemat	ical Me	thods			
Counting Principles		1	MAT1MN103	Basic Calculus	1	60	4	4	30	70	100
		2	MAT2MN103		2	60	4	4	30	70	100
3 MAT3MN203 Matrix Algebra and Vector 3 60 4 4 30 70 10 Calculus		3	MAT3MN203	Matrix Algebra and Vector Calculus	3	60	4	4	30	70	100

4			Minor Group IV - Di	screte	Mathe	ematics				
	1	MAT1MN104	Mathematical Logic, Set Theory and Combinatorics	1	60	4	4	30	70	100
	2	MAT2MN104	Graph theory and Automata	2	60	4	4	30	70	100
	3	MAT3MN204	Boolean Algebra and System of Equations	3	60	4	4	30	70	100
Г			Minor Group V –	Linea	ır Alge	ebra				
	1	MAT1MN105	Matrix Theory	1	60	4	4	30	70	100
	2	MAT2MN105	Vector Spaces and Linear Transformations	2	60	4	4	30	70	100
	3	MAT3MN205	Optimization Techniques	3	60	4	4	30	70	100
			Minor Group VI – Mati	hemat	ical Ed	conomi	es			
	1	MAT1MN106	Principles of Micro Economics	1	60	4	4	30	70	100
	2	MAT2MN106	Optimization Techniques in Economics	2	60	4	4	30	70	100
	3	MAT3MN206	Applied Mathematics for Economic Analysis	3	60	4	4	30	70	100

^{*} Students from other disciplines can choose up to one group (comprising three courses in total) from the first three options, as these groups share partially overlapping topics.

^{**} Students from major mathematics can enrol only in minor group VI or a vocational minor group as per the clauses 7.2.12 and 7.2.13 (amended).

GROUPING OF VOCATIONAL MINOR COURSES IN MATHEMATICS

		VOCA	TIONAL MATE	IEMA	TICS -	– DAT	A ANAI	YTICS				
		de				<u>~</u>			Marks			
Group No.	SI. No.	Course Code	Title	Semester	Total Hrs	Hrs/ Week	Credits	Internal	External	Total		
1				Int	roduct	tion to	AI					
	1	MAT1VN 101	Python Programming	1	75	5	4	30	70	100		
	2	MAT2VN 101	Linear Algebra for Machine Learning	2	75	5	4	30	70	100		
	3	MAT3VN 201	Introduction to Machine Learning	3	75	5	4	30	70	100		
	4	MAT8VN 401	Introduction to Artificial Intelligence	8	75	5	4	30	70	100		
	ī											
2			Intro	ductio	on to L	Oata So	cience					
	1	MAT1VN 102	Statistics for Data Science	1	75	5	4	30	70	100		
	2	MAT2VN 102	R Programming	2	75	5	4	30	70	100		
	3	MAT3VN 202	Data Mining	3	75	5	4	30	70	100		
	4	MAT8VN 402	Data Visualization	8	75	5	4	30	70	100		

- (i). Students in Single Major pathway can choose course/courses from any of the Minor/Vocational Minor groups offered by a discipline other than their Major discipline.
- (ii). Students in the Mathematics with Multiple Disciplines pathway who wish to choose a minor from within the same department are limited to selecting either the sixth minor group (Mathematical Economics) or one of the vocational minor groups listed above as one of their

multiple disciplines. For their second multiple discipline choice, students must select a Minor or Vocational Minor group offered by a discipline other than mathematics. If students opt for Mathematical Economics or another vocational group from mathematics, the title of that group will serve as their multiple discipline title.

- (iii). Students in Major with Minor pathway can choose all the courses from any two Minor groups offered by a discipline other than their Major discipline. If the students from other major disciplines choose any two Minor groups in Mathematics as given above, then the title of the Minor will be Mathematics.
- (iv). Students in Major with Vocational Minor pathway can choose all the courses from any two Vocational Minor groups offered by a discipline other than their Major discipline. If the students from other Major disciplines choose any two Vocational Minor groups in Mathematics as given above, then the title of the Vocational Minor will be Data Analytics.

DISTRIBUTION OF GENERAL FOUNDATION COURSES IN MATHEMATICS

	de	le		ek]	Marks	
Semester	Course Code	Course Title	Total Hours	Hours / Week	Credits	Internal	External	Total
1	MAT1FM105(1)	Multi-Disciplinary Course 1 - Matrices and Basics of Probability theory	45	3	3	25	50	75
1	MAT1FM105(2)	Multi-Disciplinary Course 2 -Mathematics for Competitive Examinations - Part I	45	3	3	25	50	75
2	MAT2FM106(1)	Multi-Disciplinary Course 3 -Graph Theory and LPP	45	3	3	25	50	75
2	MAT2FM106(2)	Multi-Disciplinary Course 4 – Mathematics for Competitive Examinations - Part II	45	3	3	25	50	75

3	MAT3FV109(1)	Value-Added Course 1 - History of Mathematics	45	3	3	25	50	75
3	MAT3FV109(2)	Value-Added Course 2 - Computational Logic	45	3	3	25	50	75
4	MAT4FV110(1)	Value-Added Course 3 - Statistics and Mathematics with R	45	3	3	25	50	75
4	MAT4FV110(2)	Value-Added Course 4 - The Mathematical Practices of Medieval Kerala	45	3	3	25	50	75
5	MAT5FS112	Skill Enhancement Course 2 - Mathematical Type Setting System - LaTeX	45	3	3	25	50	75
6	MAT6FS113	Skill Enhancement Course 3 - Data Science with Python	45	3	3	25	50	75

COURSE STRUCTURE FOR BATCH A1(B2)

IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Mathematics (Major A)

B1: 68 credits in Major B

A2: 53 credits in Mathematics (Major A)

B2: 53 credits in Major B

The combinations available to the students: (A1 & B2), (B1 & A2)

Note: Unless the batch is specified, the course is for all the students of the class

ır	Course Title	Total Hours	Hours/ Week	Credits		Marks	
Semester		Hours			Internal	External	Total
1	Core Course 1 in Major Mathematics – Differential Calculus	60	4	4	30	70	100
	Core Course 1 in Major B	60/75	4/5	4	30	70	100
	Core Course 2 in Major Mathematics – Matrix Algebra (for batch A1 only)	60	4	4	30	70	100
	Ability Enhancement Course English	30+30	2+2	2+1	25	50	75
	Ability Enhancement Course 2 Additional Language	45	3	3	25	50	75
	Multi-Disciplinary Course 1 in Mathematics – Matrices and Basics of Probability theory <i>Or</i> Mathematics for Competitive Exams – Part I (for batch A1 only)	45	3	3	25	50	75
	Total		24/ 25	21			525

2	Core Course 3 in Major Mathematics – Integral Calculus	60	4	4	30	70	100
	Core Course 2 in Major B	60/75	4/5	4	30	70	100
	Core Course 3 in Major B – (for batch B2 only)	60/75	4/5	4	30	70	100
	Ability Enhancement Course 3 English	30+30	2+2	2+1	25	50	75
	Ability Enhancement Course 4 Additional Language	45	3	3	25	50	75
	Multi-Disciplinary Course 2 in Mathematics – Graph Theory and LPP Or Mathematics for Competitive Exams – Part II	45	3	3	25	50	75
	Total		23 / 25	21			525
3	Core Course 4 in Major Mathematics – Multivariable Calculus.	75	5	4	30	70	100
	Core Course 5 in Major Mathematics – Basic Linear Algebra	60	4	4	30	70	100
	Core Course 4 in Major B	60/75	4/5	4	30	70	100
	Core Course 5 in Major B	60/75	4/ 5	4	30	70	100
	Multi-Disciplinary Course 1 in B	45	3	3	25	50	75

	Value-Added Course 1 in Mathematics – History of Mathematics Or Computational Logic (for batch A1 only)	45	3	3	25	50	75
	Total		23 / 25	22			550
4	Core Course 6 in Major Mathematics – Real Analysis	45+30	3+2	2+2	30	70	100
	Core Course 6 in Major B	60/75	4/5	4	30	70	100
	Core Course 7 in Major Mathematics - Abstract Algebra I	60	4	4	30	70	100
	Value-Added Course 2 in Mathematics – Statistics and Mathematics with R Or The Mathematical Practices of Medieval Kerala	45	3	3	25	50	75
	Value-Added Course 1 in B	45	3	3	25	50	75
	Skill Enhancement Course 1 in Mathematics – Fundamentals of Python and SageMath	30+30	2+2	3	25	50	75
	Total		23/ 24	21			525
5	Core Course 8 in Major – Complex Analysis	45+30	3+2	2+2	30	70	100
	Core Course 7 in Major B –	60/75	4/ 5	4	30	70	100

	Core Course 9 in Major Mathematics — Methods of Differential Equations (for batch A1 only)	60	4	4	30	70	100
	Elective Course 1 in Major Mathematics	60	4	4	30	70	100
	Elective Course 1 in Major B	60	4	4	30	70	100
	Skill Enhancement Course 1 in B	45	3	3	25	50	75
	Total		24/ 25	23			575
6	Core Course 10 in Major Mathematics – Elementary Number Theory	60	4	4	30	70	100
	Core Course 8 in Major B –	60/75	4/5	4	30	70	100
	Core Course 9 in Major B – (for batch B2 only)	60	4	4	30	70	100
	Elective Course 2 in Major Mathematics	60	4	4	30	70	100
	Elective Course 2 in Major B	60	4	4	30	70	100
	Skill Enhancement Course 2 in Mathematics – Mathematical Type Setting System - LaTeX (for batch A1 only)	45	3	3	25	50	75
	Internship in Major Mathematics (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
	Total		24/ 25	25			625
				133			3325

CREDIT DISTRIBUTION FOR BATCH A1 (B2)

IN PATHWAY 5: DOUBLE MAJOR

Semester	Major Courses in Mathematics	General Foundation Courses in Mathematics	Internship/ Project in Mathematics	Majo Courses in B	General Foundation Courses in B	AEC	Tota 1
1	4 + 4	3	-	4	-	3 + 3	21
2	4	3	-	4 + 4	-	3 + 3	21
3	4 + 4	3	-	4 + 4	3	-	22
4	4 + 4	3 + 3	-	4	3	-	21
5	4+4+4	-	-	4 + 4	3	-	23
6	4 + 4	3	2	4 + 4 + 4	-	-	25
Total	48	18	2	44	9	12	133
for Three Years		68			53	12	133
						ī	
	Major Courses in Mathematics	Minor Courses					
7	4+4+4+4+4+4	-			-	-	20
8	4+4+4	4 + 4 + 4	12*		-	-	24
		* Instead	of three Major	courses			
Total for Four Years	88 + 12 = 100	12					177

COURSE STRUCTURE FOR BATCH B1(A2)

IN PATHWAY 5: DOUBLE MAJOR

A1: 68 credits in Mathematics (Major A)

B1: 68 credits in Major B

A2: 53 credits in Mathematics (Major A)

B2: 53 credits in Major B

Note: Unless the batch is specified, the course is for all the students of the class

ster	Course Title	Total Hours	Hours/ Week	Credits		Marks	
Semester		Hours	WCCK		Internal	External	Total
1	Core Course 1 in Major Mathematics – Differential Calculus	60	4	4	30	70	100
	Core Course 1 in Major B	60/75	4/ 5	4	30	70	100
	Core Course 2 in Major B (for batch B1 only)	60/75	4/5	4	30	70	100
	Ability Enhancement Course 1 English	60	4	3	25	50	75
	Ability Enhancement Course 2 Additional Language	45	3	3	25	50	75
	Multi-Disciplinary Course 1 in B – (for batch B1 only)	45	3	3	25	50	75
	Total		23 / 25	21			525
2	Core Course 3 in Major Mathematics – Integral Calculus	60	4	4	30	70	100
	Core Course 3 in Major B –	60/75	4/5	4	30	70	100
	Core Course 2 in Major Mathematics – Elementary Number Theory (for batch A2 only).	60	4	4	30	70	100
	Ability Enhancement Course 3 English	60	4	3	25	50	75

	Ability Enhancement Course 4 Additional Language	45	3	3	25	50	75
	Multi-Disciplinary Course 1	45	3	3	25	50	75
	Matrices and Basics of Probability theory or Mathematics for Competitive Exams - Part I						
	Total		24/ 25	21			525
3	Core Course 5 in Major Mathematics – Multivariable Calculus	45+30	3+2	3+1	30	70	100
	Core Course 4 in Major Mathematics – Elementary Linear Algebra	45+30	3+2	3+1	30	70	100
	Core Course 4 in Major B	60/75	4/5	4	30	70	100
	Core Course 5 in Major B	60/75	4/5	4	30	70	100
	Multi-Disciplinary Course 2 in B –	45	3	3	25	50	75
	Value-Added Course 1 in B – (for batch B1 only)	45	3	3	25	50	75
	Total		23/25	22			550
4	Core Course 6 in Major Mathematics – Real Analysis	45+30	3+2	3+1	30	70	100
	Core Course 6 in Major B	60/75	4/5	4	30	70	100
	Core Course 7 in Major B – (for batch B1 only)	60/75	4/5	4	30	70	100

	Value-Added Course 1 in Mathematics – History of Mathematics or Computational Logic	45	3	3	25	50	75
	Value-Added Course 2 in B –	45	3	3	25	50	75
	Skill Enhancement Course 1 in Mathematics – Fundamentals of Python and SageMath		4	3	25	50	75
	Total		22 / 24	21			525
5	Core Course 7 in Major Mathematics – Abstract Algebra I	60	4	4	30	70	100
	Core Course 8 in Major B –	60/75	4/5	4	30	70	100
	Core Course 9 in Major B – (for batch B1 only)	60	4	4	30	70	100
	Elective Course 1 in Major Mathematics	60	4	4	30	70	100
	Elective Course 1 in Major B	60	4	4	30	70	100
	Skill Enhancement Course 1 in B	45	3	3	25	50	75
	Total		24/ 25	23			575
6	Core Course 8 in Major Mathematics – Methods of Differential Equations	60	4	4	30	70	100
	Core Course 10 in Major B –	60/75	4/5	4	30	70	100
	Core Course 9 in Major Mathematics – Complex Analysis (for batch A2 only)	45+30	3+2	2+2	30	70	100

Elective Course 2 in Major Mathematics	60	4	4	30	70	100
Elective Course 2 in Major B	60	4	4	30	70	100
Skill Enhancement Course 2 in B – (for batch B1 only)	45	3	3	25	50	75
Internship in Major B (Credit for internship to be awarded only at the end of Semester 6)	60		2	50	-	50
Total		24/ 25	25			625
Total Credits for Three Yo	ears		133			3325

CREDIT DISTRIBUTION FOR BATCH B1(A2)

IN PATHWAY 5: DOUBLE MAJOR

Semester	Major Courses in B	General Foundation Courses in B	Internship/ Project in B	Major Courses in Mathematics	General Foundation Courses in Mathematics	AEC	Total
1	4 + 4	3	-	4	-	3 + 3	21
2	4	-	-	4 + 4	3	3 + 3	21
3	4 + 4	3 + 3	-	4 + 4	-	-	22
4	4 + 4	3	-	4	3 + 3	ı	21
5	4 + 4 + 4	3	-	4 + 4	-	-	23
6	4 + 4	3	2	4 + 4 + 4	-	-	25
Total	48	18	2	44	9	12	133
for Three Years		68		5	3	12	133
	Major Courses in B	Minor Courses					
7	4 + 4 + 4 + 4 + 4 + 4 + 4 + 4	-			-	-	20
8	4+4+4	4+4+4	12*		-	-	24
		* in	stead of three	e Major courses			
Total	88 + 12 =						177
for	100	10					
Four Years		12					

EVALUATION SCHEME

- 1. The evaluation scheme for each course contains two parts: internal evaluation (about 30%) and external evaluation (about 70%). Each of the Major and Minor courses is of 4-credits. It is evaluated for 100 marks, out of which 30 marks are from internal evaluation and 70 marks, from external evaluation. Each of the General Foundation Course is of 3-credits. It is evaluated for 75 marks, out of which 25 marks are from internal evaluation and 50 marks, from external evaluation.
- 2. The 4-credit courses (Major and Minor courses) are of two types: (i) courses with only theory and (ii) courses with 3-credit theory and 1-credit Practical/Practicum.

In 4-credit courses with only theory component, out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 10 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

In 4-credit courses with 3-credit theory and 1-credit Practical/Practicum components, out of the total 5 modules of the syllabus, 4 modules are for theory and the fifth module is for Practical/Practicum. The Practical/Practicum component is internally evaluated for 20 marks. The internal evaluation of the 4 theory modules is for 10 marks.

3. All the 3-credit courses (General Foundational Courses) in Mathematics are with only theory component. Out of the total 5 modules of the syllabus, one open-ended module with 20% content is designed by the faculty member teaching that course, and it is internally evaluated for 5 marks. The internal evaluation of the remaining 4 theory modules is for 20 marks.

S1. No.	Nature o	Nature of the Course		Internal Evaluation in Marks (About 30% of the Total)		Total Marks
			Open-ended Module / Practical/	On the other 4 Modules	on 4 Modules	
			Practicum		(Marks)	
1	4-credit course	only theory	10	20	70	100
		(5 modules)				
2	4-credit course	Theory	20	10	70	100
		(4 modules)				
		Practical/ Practicum				
3	3-credit course	only theory (5 modules)	5	20	50	75

1. MAJOR AND MINOR COURSES

1.1. INTERNAL EVALUATION OF THEORY COMPONENT

Sl.	Components of	Internal Marks for the Theory Part					
No.	Internal Evaluation of Theory Part of a	of a Major / Minor Course of 4-credits					
	Major / Minor Course	Theory	Only		ory + /Practicum		
		4 Theory	Open-ended	4 Theory	Practical/		
		Modules	Module	Modules	Practicum		
1	Test paper/	10	4	5	-		
	Mid-semester Exam						
2	Seminar/ Viva/ Quiz	6	4	3	-		
3	Assignment	4	2	2	-		
	•	20	10	10	20*		
Total		30		30			

^{*} Refer the table in section 1.2 for the evaluation of Practical/Practicum component

1.2. EVALUATION OF PRACTICAL/PRACTICUM COMPONENT

The evaluation of Practical/Practicum component in Major and Minor courses is completely by internal evaluation.

- Continuous evaluation of Practical/Practicum by the teacher-in-charge shall carry a weightage of 50%.
- The end-semester Practical/Practicum examination and viva-voce, and the evaluation of Practical/Practicum records shall be conducted by the teacher in-charge and an internal examiner appointed by the Department Council.
- The process of continuous evaluation of Practical/Practicum courses shall be completed before 10 days from the commencement of the end-semester examination.
- Those who passed in continuous evaluation alone will be permitted to appear for the end-semester examination and viva-voce.

The scheme of continuous evaluation and the end-semester examination and viva-voce of Practical/Practicum component shall be as given below:

Sl. No.	Evaluation of Practical/Practicum Component	Marks for	Weightage
	of Credit-1 in a Major / Minor Course	Practical/ Practicum	
1	Continuous evaluation of Practical/Practicum/	10	50%
	exercise performed in Practical/Practicum classes		
	by the students		
2	End-semester examination and viva-voce to be	7	35%
	conducted by teacher-in-charge along with an		
	additional examiner arranged internally by the		
	Department Council		
3	Evaluation of the Practical/Practicum records	3	15%
	submitted for the end semester viva-voce		
	examination by the teacher-in-charge and		
	additional examiner		
	Total Marks	20	

1.3. EXTERNAL EVALUATION OF THEORY COMPONENT

External evaluation carries 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the University based on 10-point grading system (refer section 5).

PATTERN OF QUESTION PAPER FOR MAJOR AND MINOR COURSES

Duration	Type	Total No. of	No. of	Marks for	Ceiling
		Questions	Questions to be	Each	of
			Answered	Question	Marks
2 Hours	Short Answer	10	8 – 10	3	24
	Paragraph/ Problem	8	6 – 8	6	36
	Essay	2	1	10	10
				Total Marks	70

2. INTERNSHIP

- All students should undergo Internship of 2-credits during the first six semesters in Research Institutions, Universities, Firms, Industry or Organizations, or training in labs with faculty and researchers of their own institution or other Higher Educational Institutions (HEIs) or research institutions.
- Internship can be for enhancing the employability of the student or for developing the research aptitude.
- Internship can involve hands-on training on a particular skill/ equipment/ software. It can be a short project on a specific problem or area. Attending seminars or workshops related to an area of learning or skill can be a component of Internship.

A faculty member/ scientist/ instructor of the respective institution, where the student does the Internship, should be the supervisor of the Internship

2.1. GUIDELINES FOR INTERNSHIP

- 1. Internship can be in Mathematics or allied disciplines.
- 2. There should be minimum 60 hrs. of engagement from the student in the Internship.
- 3. Summer vacations and other holidays can be used for completing the Internship.
- 4. In B.Sc. Mathematics Honours programme, institute/ industry visit or study tour is a requirement for the completion of Internship. Visit to minimum one national research institute, research laboratory and place of scientific importance should be part of the study tour. A brief report of the study tour has to be submitted with photos and analysis.
- 5. The students should make regular and detailed entries in to a personal log book through the period of Internship. The log book will be a record of the progress of the Internship and the time spent on the work, and it will be useful in writing the final report. It may contain mathematical results, ideas, expressions, experimental conditions, rough work and calculation, computer file names etc. All entries should be dated. The Internship supervisor should periodically examine and countersign the log book.
- 6. The log book and the typed report must be submitted at the end of the Internship.
- 7. The institution at which the Internship will be carried out should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

2.2. VALUATION OF INTERNSHIP

- The evaluation of Internship shall be done internally through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme.
- The credits and marks for the Internship will be awarded only at the end of semester 6.
- The scheme of continuous evaluation and the end-semester viva-voce examination based on the submitted report shall be as given below:

Sl. No.	Components of Evaluation of Internship		Marks for Internship 2 Credits	Weightage
1	Continuous evaluation of internship through	Acquisition of skill set	10	40%
2	interim presentations and reports by the committee	Interim Presentation and Viva-voce	5	
3	internally constituted by the Department Council	Punctuality and Log Book	5	
4	Report of Institute Visit/ S	tudy Tour	5	10%
5	End-semester viva-voce examination to be	Quality of the work	6	35%
6	conducted by the committee internally	Presentation of the work	5	
7	constituted by the Department Council	Viva-voce	6	
8	Evaluation of the day-to-day records, the report of internship supervisor, and final report submitted for the end semester viva—voce examination before the committee internally constituted by the Department Council		8	15%
		Total Marks	50	

3. PROJECT

3.1. PROJECT IN HONOURS PROGRAMME

- · In Honours programme, the student has the option to do a Project of 12-credits instead of three Core Courses in Major in semester 8.
- The Project can be done in the same institution/ any other higher educational institution (HEI)/ research centre/ training centre.
- The Project in Honours programme can be a short research work or an extended internship or a skill-based training programme.
- · A faculty member of the respective institution, where the student does the Project, should be the supervisor of the Project.

3.2. PROJECT IN HONOURS WITH RESEARCH PROGRAMME

- Students who secure 75% marks and above (equivalently, CGPA 7.5 and above) cumulatively in the first six semesters are eligible to get selected to Honours with Research stream in the fourth year.
- A relaxation of 5% in marks (equivalently, a relaxation of 0.5 grade in CGPA) is allowed for those belonging to SC/ ST/ OBC (non-creamy layer)/ Differently-Abled/ Economically Weaker Section (EWS)/ other categories of candidates as per the decision of the UGC from time to time.
- In Honours with Research programme, the student has to do a mandatory Research Project of 12-credits instead of three Core Courses in Major in semester 8.
- The Research and Post-Graduate Department of Mathematics (which is an approved Research Centre of University of Calicut) offer the Honours with Research programme. The department has two faculty members with Ph.D., and also has the necessary infrastructure to offer Honours with Research programme.
- A faculty member of the College with a Ph.D. degree can supervise the research project of the students who have enrolled for Honours with Research. One such faculty member can supervise maximum five students in Honours with Research stream.

The maximum intake of the department for Honours with Research programme is fixed by the department based on the number of faculty members eligible for project supervision, and other academic, research, and infrastructural facilities available.

• If a greater number of eligible students are opting for the Honours with Research programme than the number of available seats, then the allotment shall be based on the existing rules of reservations and merits.

3.3. GUIDELINES FOR THE PROJECT IN HONOURS PROGRAMME

AND HONOURS WITH RESEARCH PROGRAMME

- 1. Project can be in Mathematics or allied disciplines.
- 2. Project should be done individually.
- 3. Project work can be of theoretical/experimental/computational in nature.

- 4. There should be minimum 360 hrs. of engagement from the student in the Project work in Honours programme as well as in Honours with Research programme.
- 5. There should be minimum 13 hrs./week of engagement (the hours corresponding to the three core courses in Major in semester 8) from the teacher in the guidance of the Project(s) in Honours programme and Honours with Research programme.
- 6. The various steps in project works are the following:
 - Wide review of a topic.
 - Investigation on a problem in a systematic way using appropriate techniques.
 - Systematic recording of the work.
 - Reporting the results with interpretation in a standard documented form.

Presenting the results before the examiners.

- 7. During the Project the students should make regular and detailed entries in to a personal log book through the period of investigation. The log book will be a record of the progress of the Project and the time spent on the work, and it will be useful in writing the final report. It may contain mathematical models and results, ideas, mathematical expressions, rough work and calculation, computer file names etc. All entries should be dated. The Project supervisor should periodically examine and countersign the log book.
 - 8. The log book and the typed report must be submitted at the end of the Project. A copy of the report should be kept for reference at the department. A soft copy of the report too should be submitted, to be sent to the external examiner in advance.
 - 9. It is desirable, but not mandatory, to publish the results of the Project in a peer reviewed journal.
 - 10. The project report shall have an undertaking from the student and a certificate from the research supervisor for originality of the work, stating that there is no plagiarism, and that the work has not been submitted for the award of any other degree/ diploma in the same institution or any other institution.
 - 11. The project proposal, institution at which the project is being carried out, and the project supervisor should be prior-approved by the Department Council of the college where the student has enrolled for the UG Honours programme.

3.4. EVALUATION OF PROJECT

- The evaluation of Project will be conducted at the end of the eighth semester by both internal and external modes.
- The Project in Honours programme as well as that in Honours with Research programme will be evaluated for 300 marks. Out of this, 90 marks are from internal evaluation and 210 marks, from external evaluation.
- The internal evaluation of the Project work shall be done through continuous assessment mode by a committee internally constituted by the Department Council of the college where the student has enrolled for the UG Honours programme. 30% of the weightage shall be given through this mode.
- The remaining 70% shall be awarded by the external examiner appointed by the institution.
- The scheme of continuous evaluation and the end-semester viva-voce of the Project shall be as given below:

Sl.	Components of Evaluation of Project	Marks for the Project	Weightage
		(Honours/	
No		Honours with	
		Research)	
1	Continuous evaluation of project work	90	30%
	through interim presentations and reports		
	by the committee internally constituted by		
	the Department Council		
2	End-semester viva-voce examination to	150	50%
	be conducted by the external examiner		
	appointed by the institution		
3	Evaluation of the day-to-day records and	60	20%
	project report submitted for the end-		
	semester viva-voce examination		
	conducted by the external examiner		
	Total Marks	300	

INTERNAL EVALUATION OF PROJECT

Sl. No	Components of Evaluation of	Marks for the Project (Honours/
	Project	Honours with Research)
1	Skill in doing project work	30
2	Interim Presentation and Viva- Voce	20
3	Punctuality and Log book	20
4	Scheme/ Organization of Project Report	20
	Total Marks	90

EXTERNAL EVALUATION OF PROJECT

Sl. No	Components of Evaluation of Project	Marks for the Project (Honours/
		Honours with Research)
		12 credits
1	Content and relevance of the Project, Methodology, Quality of analysis, and Innovations of Research	50
2	Presentation of the Project	50
3	Project Report (typed copy), Log Book and References	60
4	Viva-Voce	50
_	Total Marks	210

4. GENERAL FOUNDATION COURSES

All the General Foundation Courses (3-credits) in Mathematics are with only theory component.

4.1. INTERNAL EVALUATION

Sl. No.	Components of Internal	Internal Marks of a General Foundation Course of 3-credits in Mathematics		
	Evaluation of a General	Course of 3-cred	aits in Mathematics	
	Foundation Course in Mathematics	4 Theory Modules	Open-ended Module	
1	Test paper/ Mid-semester Exam	10	2	
2	Seminar/ Viva/ Quiz	6	2	
3	Assignment	4	1	
		20	5	
	Total		25	

4.2. EXTERNAL EVALUATION

External evaluation carries about 70% marks. Examinations will be conducted at the end of each semester. Individual questions are evaluated in marks and the total marks are converted into grades by the institution based on 10-point grading system (refer section 5)

PATTERN OF QUESTION PAPER FOR GENERAL FOUNDATION COURSES

Duration	Type	Total No. of	No. of	Marks for	Ceiling
		Questions	Questions to be	Each	of
			Answered	Question	Marks
1.5 Hours	Short Answer	10	8 – 10	2	16
	Paragraph/ Problem	5	4 – 5	6	24
	Essay	2	1	10	10
	•	•	•	Total Marks	50

5. LETTER GRADES AND GRADE POINTS

- Mark system is followed for evaluating each question.
- For each course in the semester letter grade and grade point are introduced in 10-point indirect grading system as per guidelines given below.
- The Semester Grade Point Average (SGPA) is computed from the grades as a measure of the student's performance in a given semester.
- The Cumulative GPA (CGPA) is based on the grades in all courses taken after joining the programme of study.
- Only the weighted grade point based on marks obtained shall be displayed on the grade card issued to the students.

LETTER GRADES AND GRADE POINTS

Sl.	Percentage of Marks	Description	Letter		Range of	Class
No.	(Internal & External		Grade	Point	Grade Points	
	Put Together)					
1	95% and above	Outstanding	O	10	9.50 - 10	First Class
2	Above 85% and below 95%	Excellent	A+	9	8.50 – 9. 49	with Distinction
3	75% to below 85%	Very Good	A	8	7.50 - 8.49	
4	65% to below 75%	Good	B+	7	6.50 - 7.49	
5	55% to below 65%	Above Average	В	6	5.50 – 6.49	First Class
6	45% to below 55%	Average	С	5	4.50 - 5.49	Second Class
7	35% to below 45% aggregate (internal and external put together) with a minimum of 30% in external valuation	Pass	Р	4	3.50 – 4.49	Third Class
8	Below an aggregate of 35% or below 30% in external evaluation	Fail	F	0	0 – 3.49	Fail
9	Not attending the examination	Absent	Ab	0	0	Fail

- When students take audit courses, they will be given Pass (P) or Fail (F) grade without any credits.
- The successful completion of all the courses and capstone components prescribed for the three-year or four-year programme with 'P' grade shall be the minimum requirement for the award of UG Degree or UG Degree Honours or UG Degree Honours with Research, as the case may be.

5.1. COMPUTATION OF SGPA AND CGPA

• The following method shall be used to compute the Semester Grade Point Average (SGPA):

The SGPA equals the product of the number of credits (Ci) with the grade points (Gi) scored by a student in each course in a semester, summed over all the courses taken by a student in the semester, and then divided by the total number of credits of all the courses taken by the student in the semester,

i.e. SGPA (Si) =
$$\Sigma i$$
 (Ci x Gi) / Σi (Ci)

where Ci is the number of credits of the ith course and Gi is the grade point scored by the student in the ith course in the given semester. Credit Point of a course is the value obtained by multiplying the credit (Ci) of the course by the grade point (Gi) of the course.

Semester	Course	Credit	Letter	Grade	Credit Point
			Grade	point	(Credit x Grade)
I	Course 1	3	A	8	3 x 8 = 24
I	Course 2	4	B+	7	4 x 7 = 28
I	Course 3	3	В	6	3 x 6 = 18
I	Course 4	3	О	10	3 x 10 = 30
I	Course 5	3	С	5	3 x 5 = 15
I	Course 6	4	В	6	4 x 6 = 24
	Total	20			139
	SGPA				139/20 = 6.950

The Cumulative Grade Point Average (CGPA) of the student shall be calculated at the end of a programme. The CGPA of a student determines the overall academic level of the student in a programme and is the criterion for ranking the students.

CGPA for the three-year programme in CUFYUGP shall be calculated by the following formula.

CGPA for the four-year programme in CUFYUGP shall be calculated by the following formula.

- The SGPA and CGPA shall be rounded off to three decimal points and reported in the transcripts.
- Based on the above letter grades, grade points, SGPA and CGPA, the institution shall issue the transcript for each semester and a consolidated transcript indicating the performance in all semesters.

MAJOR COURSES

Programme	BSc Mathematics Honours						
Course Code	MAT1CJ1	MAT1CJ101 / MAT1MN100					
Course Title	DIFFERE	ENTIAL CALCULUS					
Type of Course	Major						
Semester I							
Academic Level	100-199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites Basic	knowledge	of Sets, Relations and Func	ctions, School L	Level Algebra			
	and Real N	Numbers (0-99 level).					
Course Summary	The cour	se covers fundamental c	concepts in c	calculus, including			
	functions,	shifting of graphs, limits, c	continuity, diffe	erentiation, extreme			
	values, the	e Mean Value Theorem, gra	phing with der	rivatives, and limits			
	at infinity	with asymptotes. Students	s learn techniq	ues for evaluating			
	limits, finding extrema, and graphing functions using derivatives,						
	preparing them for further studies						
	in calculus	and related fields.					

Course Outcomes (CO):

СО	CO Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse a function for its limits,	An	F	Internal
	continuity and differentiability and			Exam/Assignment
	evaluate limits and derivatives.			/Seminar/Viva/
				End Sem Exam
CO2	Apply first and second derivatives and	Ap	F	Internal
	related theorems to find extrema of			Exam/Assignment
	functions.			/Seminar/Viva/
				End Sem Exam
CO3	Sketch the graph of functions by	An	F	Internal
	analysing critical points and			Exam/Assignment
	asymptotes			/Seminar/Viva/
				End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge (F), Conceptual Knowledge (C), Procedural Knowledge (P), Metacognitive Knowledge (M)

Textbook	Calculus and Analytic Geometry, 9 th Edition, George B. Thomas, Jr. Ross L. Finney, Pearson Publications, 2010, ISBN: 978-8174906168.					
Module	Unit	Content	Hrs (48+12)	Marks		
		Module I	(40+12)	Ext. 70		
	1	Preliminaries: Section 3 - Functions	-			
	2	Preliminaries: Section 4 - Shifting Graphs.	-			
	3	Section 1.1-Rates of Change and Limits - Limits of Function Values onwards.				
I	4	Section 1.2 - Rules for Finding Limits. Topics up to and including Example 3.	12	Marks		
	5	Section 1.2 - Rules for Finding Limits. Rest of the section.				
	6	Section 1.4- Extensions of the Limit Concept. Topics up to and including Example 6.				
		Module II				
	7	Section 1.5 - Continuity.				
	8	Section 2.1 - The Derivative of a Function (The topic Graphing f' from estimated values is optional).				
	9	Section 2.2 - Differentiation Rules.				
II	10	Section 2.3 - Rates of Change. Topics up to and including Example 5.	15	Min.15		
	11	Section 2.5 - The Chain Rule. Topics up to and including Example 6.	-			
	12	Section 2.6- Implicit Differentiation and Rational Exponents. Topics up to and including Example 5.				
		Module III				
	13	Section 3.1 - Extreme Values of Functions. Topics up to Finding Extrema.				
	14	Section 3.1 - Extreme Values of Functions- Topics from Finding Extrema onwards.				
III	15	Section 3.2 - The Mean Value Theorem -Topics up to and including Example 4. (Proof of Theorem 3 is optional).	11	Min.15		
	16	Section 3.2 - The Mean Value Theorem- Increasing Functions and Decreasing Functions				

	17	Section 3.3 - The First Derivative Test for Local Extreme Values.		
		Module IV		
IV	18	Section 3.4 - Graphing with y' and y'' - Topics up to and including Example 5.		
	19	Section 3.4 - Graphing with y' and y''- Topics from The Second Derivative Test for Local Extreme Values onwards.		
	20	Section 3.5 - Limits as $x \to \pm \infty$, Asymptotes and Dominant Terms Topics up to and including Summary for Rational Functions.	10 M	Min.15
	21	Section 3.5 - Limits as $x \to \pm \infty$, Asymptotes and Dominant Terms- Topics from Horizontal and Vertical Asymptotes up to and including Example 12.		
	22	Section 3.5 - Limits as $x \to \pm \infty$, Asymptotes and Dominant Terms-Topics from Graphing with Asymptotes and Dominant Terms onwards.		
		Module V (Open Ended)		
V	Defin: Funct	nometric Functions, Tangent Values and Formal itions of Limits, Derivatives of Trigonometric ions, Power Rule of Differentiation for rational rs, Optimization, Linearization and Differentials.	12	

References

- 1. Howard Anton, Biven, & Stephen Davis, Calculus, 7 th Ed., Wiley India
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10 th Ed, John Wiley & Sons.
- 3. Robert T Smith and Roland B Minton, Calculus, 4 th Ed. McGraw-Hill Companies
- 4. Soo T Tan, Calculus, 9 th Ed.Brooks/Cole Pub Co.
- 5. Tom M. Apostol, Calculus, Vol 1: One Variable Calculus with an Introduction to Linear Algebra, 2nd Ed, John Wiley & Sons.
- 6. Michael Van Biezen Calculus Lectures: https://youtu.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

^{*}Optional topics are exempted for end semester examination

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	2	1	3	0	1
CO 2	2	3	2	1	3	0	2	1	3	0	1
CO 3	2	3	2	1	3	0	2	2	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar Viva		End Semester Examinations
CO 1	~	√	>	>	√
CO 2	√	>	>	>	√
CO 3	✓	✓	√	√	✓

Programme	BSc Mathemat	ics Honours							
Course Code	MAT2CJ101 / I	MAT2CJ101 / MAT2MN100							
Course Title	INTEGRAL (CALCULUS							
Type of Course	Major								
Semester II									
Academic	100-199								
Level									
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	Basic knowledg	e of Functions, Limits, Cont	tinuity and Diff	erentiation					
	(MAT1CJ101 -	Differential Calculus).							
Course	The course pro	vides a comprehensive expl	loration of integ	gral calculus, covering					
Summary	techniques suc	ch as indefinite integrals,	Riemann sun	ns, definite integrals,					
	properties of	integrals, the Fundamental	l Theorem, L	'Hopital's Rule, basic					
	integration form	integration formulas, and applications in finding areas between curves, volumes							
	of solids, length	hs of plane curves, and area	as of surfaces of	of revolution. Through					
	these topics, str	udents gain proficiency in s	solving a wide	range of mathematical					
	problems invol	ving integration and its appl	ications in vari	ous fields.					

Course Outcomes (CO):

CO	CO Statement Cognitive		Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Solve indefinite and definite integrals of functions.	Ap	F	Internal Exam/Assignment /Seminar/Viva/
				End Sem Exam
CO2	Learn logarithmic, exponential, inverse trigonometric functions and to evaluate derivatives and integrals of the above transcendental functions and use it for computations of other limits	U	F	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam
CO3	Apply integration formulas to find the area between two curves, the surface area and volume of a solid of revolution.	Ap	F	Internal Exam/Assignment /Seminar/Viva/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

[#] - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook		lus and Analytic Geometry, 9 th Edition, George B. Thomas L. Finney, Pearson Publications, 2010, ISBN: 978-8174906			
Module	Unit	Content	Hrs	Marks	
		M. J. I.	(48+12)	Ext: 70	
		Module I			
	1	Section 4.1 - Indefinite Integrals.			
	2	Section 4.3 - Integration by Substitution - Running the Chain Rule Backward.			
I	3	Section 4.5 - Riemann Sums and Definite Integrals. (Example 9 is optional.)	14	Min.15	
	4	Section 4.6 - Properties, Area, and the Mean Value Theorem - Topics up to and including Example 6.	-		
	5	Section 4.6 - Properties, Area, and the Mean Value Theorem- Topics from The Average Value of an Arbitrary Continuous Function onwards.			
		Module II			
	6	Section 4.7 – The Fundamental Theorem (Example 6 is optional).			
	7	Section 4.8 - Substitution in Definite Integrals.	_		
	8	Section 6.2 - Natural Logarithms- Topics up to and including The Graph and Range of ln x.			
II	9	Section 6.2 - Natural LogarithmsTopics from Logarithmic Differentiation onwards.	11	Min.15	
	10	Section 6.3 - The Exponential Function- Topics up to and including Example 4.	-		
	11	Section 6.3 - The Exponential Function- Topics from The Derivative and Integral of e ^x onwards.			
		Module III			
	12	Section 6.6 -L' Hopital's Rule			
111	13	Section 6.9 - Derivatives of Inverse Trigonometric Functions; Integrals.	12	Min 15	
III	14	Section 7.1 - Basic Integration Formulas.	12	Min.15	
	15	Section 7.2 - Integration by Parts			
	16	Section 7.3 Partial Fractions.			
		Module IV			
IV	17	Section 5.1 - Areas Between Curves Topics up to and including Example 2.	11	Min.15	
	1		1	<u> </u>	

22 V	Trigor Funct	Section 5.6 - Areas of Surfaces of Revolution-Topics up to and including Example 2. Module V (Open Ended) See Functions and their Derivatives, a ^x and log _a x, Inverse nometric Functions and their derivatives, Hyperbolic ions, Integrals and their derivatives, Integration using ometric substitutions, Moments and Center of Mass.	12	
	21	Section 5.5 - Lengths of Plane Curves Topics up to and including Example 2.		
	20	Section 5.3 - Volumes of Solids of Revolution- Disks and Washers - Topics up to and including Example 4.		
	19	Section 5.2 - Finding Volumes by Slicing. (Example 2 may be done as open ended).		
	18	Section 5.1 - Areas Between Curves- Topics from Boundaries with Changing Formulas		

References

- Howard Anton, Biven, & Stephen Davis, Calculus, 7 th Ed., Wiley India
 Erwin Kreyszig, Advanced Engineering Mathematics, 10 th Ed, John Wiley & Sons.
- 3. Robert T Smith and Roland B Minton, Calculus, 4 th Ed. McGraw-Hill Companies
- 4. Soo T Tan, Calculus, 9 th Ed. Brooks/Cole Pub Co.
- 5. Tom M. Apostol, Calculus, Vol 1: One Variable Calculus with an Introduction to Linear Algebra, 2nd Ed, John Wiley & Sons.
- 6. Michael Van Biezen Calculus Lectures: https://youtu.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

^{*}Optional topics are exempted for end semester examination

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	3	1	3	0	1
CO 2	2	3	2	1	3	0	3	1	3	0	1
CO 3	2	3	2	1	3	0	3	2	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar Viva		End Semester Examinations
CO 1	√	>	>	>	✓
CO 2	✓	✓	√	√	✓
CO 3	√	✓	√	√	√

Programme	BSc Mathematics Honours								
Course Code	MAT3CJ201								
Course Title	MULTIVARIA	MULTIVARIABLE CALCULUS							
Type of Course	Major								
Semester III									
Academic Level	200-299								
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours					
	4	3	2	75					
Pre-requisites	_	e of vectors, dot product, c -dimensional space	ross product, ti	riple products, lines					
Course Summary	and planes in 3-dimensional space Multivariable Calculus takes the concepts learned in the single variable calculus course and extends them to multiple dimensions. Topics discussed include: Parameterizations of Plane Curves, Polar Coordinates, Lines and Planes in Space, Cylinders and Quadric Surfaces, Cylindrical and Spherical Coordinates, functions of many variables, limit, continuity, differentiation, and integration of vector-valued functions; application of vector-valued functions limits, and derivatives of multivariable functions, tangent planes and normal lines of surfaces, applying double and triple integrals to multivariable functions to find area, volume, surface area, vector fields, finding curl and divergence of vector fields; line integrals; Green's Theorem; parametric surfaces, including normal vectors, tangent planes, and areas; orientation of a surface; Divergence Theorem; and Stokes's Theorem.								

Course Outcomes (CO):

CO	CO Statement Cognitive		Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Describe various coordinate systems—	Ap	С	Internal
	Cartesian, polar, cylindrical, and			Examination/
	spherical—to represent, analyse, and			Assignment/ End
	interpret geometric figures and spatial			Sem examination
	relationships.			
CO2	Compute and apply limits, partial	Ap	С	Internal
	derivatives, and multiple integrals for			Examination/Sem
	functions of several variables to solve			inar/ Assignment/
	complex mathematical and real-world			Report/ End Sem
	problems.			examination
CO3	Apply advanced integration techniques	An	С	Internal
	and vector calculus principles to			Examination/Sem
	evaluate integrals in various coordinate			inar/ Assignment/
	systems and analyse vector fields and			Report/ End Sem
	their applications in physics and			examination
	engineering.			

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook		lus and Analytical Geometry, George B Thomas, Ross L Finney- on Wesley- 9th Edition.	
Module	Unit	Content	Hrs (45+ 30)
		Module I	
	1	Section 9.4: Parameterizations of Plane Curves	
		Topics up to and including Example 7	
	2	Section 9.6: Polar Coordinates	•
		Definition of Polar Coordinates, Negative Values of r, Elementary Coordinate Equations and Inequalities, Cartesian Versus Polar Coordinates.	
	3	Section 10.5: Lines and Planes in Space	
I		Lines and Line Segments in Space, The Distance from a Point to a Line in Space, Equations for Planes in Space, Angles Between Planes; Lines of Intersection.	10
	4	Section 10.6: Cylinders and Quadric Surfaces	
		Cylinders, Drawing Lesson, Quadric Surfaces, Drawing Lesson.	
	5	Section 10.7: Cylindrical and Spherical Coordinates	
		Cylindrical Coordinates, Spherical Coordinates	
		Module II	
	6	Section 12.1: Functions of Several Variables	
		Functions and Variables, Graphs and Level Curves of Functions of Two Variables, Contour Lines, Level Surfaces of Functions of Three Variables.	
	7	Section 12.2: Limits and Continuity	
		Limits, Continuity, Functions of More Than Two Variables.	
II	8	Section 12.3: Partial Derivatives	12
		Definitions and Notation, Calculations, Functions of More Than Two Variables, The Relationship Between Continuity and the Existence of Partial Derivatives, Second Order Partial Derivatives, Euler's Theorem, Partial Derivatives of Still Higher Order.	
	9	Section 12.4: Differentiability, Linearization, and Differentials	

		Differentiability, How to Linearize a Function of Two					
		Variables, How Accurate is the Standard Linear					
		Approximation? Predicting Change with Differentials (Topics					
		up to and including Example 7)					
	10	Section 12.5: The Chain Rule					
	Theorem 5 is optional), The Chain Rule for Functions of Three Variables, The Chain Rule for Functions Defined on						
		Three Variables, The Chain Rule for Functions Defined on					
		Surfaces, Implicit Differentiation, Remembering the Different					
		Forms of the Chain Rule, The Chain Rule for Functions of					
		Many Variables.					
	1.1	Module III					
	11	Section 12.7: Directional Derivatives, Gradient Vectors, and Tangent Planes					
		Directional Derivatives in the Plane, Geometric Interpretation					
		of the Directional Derivative, Calculation, Properties of					
		Directional Derivatives, Gradients and Tangent to Level					
		Curves, Functions of Three Variables.					
	12	Section 12.7: Directional Derivatives, Gradient Vectors, and					
	12	angent Planes					
		Equations for Tangent Planes and Normal Lines, Planes					
III		Tangent to a Surface $z=f(x,y)$, Algebra Rules for Gradients.					
111	13	Section 12.8: Extreme Values and Saddle points					
		The Derivative Tests.	11				
	14	Section 12.8: Extreme Values and Saddle points					
		Absolute Maxima and Minima on Closed Bounded Regions,					
		Conclusion.					
	15	Section 12.9: Lagrange Multipliers					
		Constrained Maxima and Minima, The Method of Lagrange					
		Multipliers (Theorem 9 and Corollary of Theorem 9 are					
		optional).					
	16	Section 12.9: Lagrange Multipliers					
		Lagrange Multipliers with Two Constraints.					
		Module IV					
	17	Section 13.1: Double Integrals,					
		Double Integrals over Rectangles, Properties of Double					
IV		Integrals, Double Integrals as Volumes, Fubini's Theorem for					
		Calculating Double Integrals.					
		Carearaning Boasie integrals.					
	18	Section 13.1: Double Integrals	12				

		Double Integrals over Bounded Nonrectangular Regions,						
		Finding the Limits of Integration.						
	19	Section 13.2: Areas, Moments and Centers of Mass						
		Areas of Bounded Regions in the Plane, Average Value.						
	20	Section 13.3: Double Integrals in Polar Form						
		Integrals in Polar Coordinates, Limits of Integration, Changing Cartesian Integrals into Polar Integrals.						
	21	Section 13.4: Triple Integrals in Rectangular Coordinates	•					
		Triple Integrals, Properties of Triple Integrals, Volume of a Region in Space, Evaluation.						
	22	Section 13.4: Triple Integrals in Rectangular Coordinates	-					
		Average Value of a Function in Space.						
		Practicum						
	Triple Integrals in Cylindrical Coordinates, Spherical coordinates							
	Substi	Substitution in Multiple Integrals						
	Vecto	Vector Valued Functions and Space Curves						
	Line I	ntegrals						
	Vecto	r Fields, Work, Circulation and Flux						
V	Path I	ndependence, Potential Functions and Conservative Fields.	30					
	Green	's Theorem in the Plane (Proof is Optional)						
	Surfac	ce area and surface integrals						
	Parametrized surfaces							
	Stoke	's theorem (Proof is optional)						
	The D	vivergence theorem (Proof is Optional)						

References:

- 1. Anton, Bivens & Davis : Calculus Early Transcendentals (10/e) John Wiley & Sons, Inc.(2012) ISBN: 9780470647691
- 2. Arnold Ostebee & Paul Zorn: Multivariable Calculus (2/e) W. H. Freeman Custom Publishing, N.Y.(2008)ISBN: 9781429230339
- 3. James Stewart : Calculus (8/e) Brooks/Cole Cengage Learning(2016) ISBN:9781285740621
- 4. Jerrold E. Marsden & Anthony Tromba: Vector Calculus (6/e) W. H. Freeman and Company, New York(2012) ISBN: 9781429215084
- 5. Joel Hass, Christopher Heil & Maurice D. Weir: Thomas' Calculus (14/e) Pearson(2018) ISBN 0134438981
- 6. Jon Rogawski: Multivariable Calculus Early Transcendentals (2/e) W. H. Freeman and Company (2012) ISBN: 1429231874

- 7. Robert A Adams & Christopher Essex : Calculus: A complete Course (8/e) Pearson Education Canada (2013) ISBN: 032187742X
- 8. William Wade: An Introduction to Analysis, (4/e) Pearson Education

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	3	3	2	1	1	1	1	3
CO 2	3	2	2	2	3	2	1	-	3	-	1
CO 3	3	2	1	1	3	2	1	1	1	-	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Report
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Report	End Semester Examinations
CO 1	√	V			V
CO 2	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
CO 3					√

^{*}Optional topics are exempted for end semester examination **70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Programme	BSc Mathematics Ho	BSc Mathematics Honours							
Course Code	MAT3CJ202 / MAT3MN200								
Course Title	MATRIX ALGEBR	RA .							
Type of Course	Major								
Semester III									
Academic	200 – 299	200 – 299							
Level									
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites		uations and their solution							
	2. Euclidean Spaces a	and their algebraic and geo	ometric proper	rties.					
Course	This course covers ma	atrix theory and linear alg	ebra, emphasi	zing topics useful					
Summary		plines. It begins with th							
	equations and the pro	perties of matrices. Emph	asis is given to	o topics including					
	systems of equations	s, vector spaces, linear d	lependence ar	nd independence,					
	dimension, linear trar	nsformations, eigenvalues	and diagonali	ization.					

Course Outcomes (CO):

СО	CO Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand row reductions and echelon forms of a matrix and their uses in solving a linear system.	U	С	Internal Exam/Assignment/ Seminar/Viva/ End Sem Exam
CO2	Define and compute eigen values and eigen vectors of a square matrix.	An	Р	Internal Exam/Assignment/Semi nar/Viva/ End Sem Exam
CO3	Interpret Linear Transformations using matrices and visualize geometrically.	An	С	Internal Exam/Assignment/Semi nar/Viva/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text Book	Linea 2006.	r Algebra and its Applications, Third Edition, David .C. Lay, Po	Edition, David .C. Lay, Pearson Publications				
Module	Unit	Content	Hrs (60)	External Marks (70)			
I		Module I					
	1	Section 1.1: Systems of Linear Equations					
		Systems of Linear Equations, Matrix Notation, Solving a Linear System.		Min. 15			
	2	Section 1.1: Systems of Linear Equations	-				
		Elementary Row Operations, Existence and Uniqueness Questions.					
	3	Section 1.2: Row Reduction and Echelon Forms	-				
		Row Reduction and Echelon Forms, Pivot Positions, The Row Reduction Algorithm.					
	4	Section 1.2: Row Reduction and Echelon Forms	-				
		Solutions of Linear Systems, Parametric Descriptions of Solution Sets, Back Substitution, Existence and Uniqueness Questions.	14				
	5	Section 1.3: Vector Equations					
		Vector Equations, Vectors in \mathbb{R}^2 , Geometric Descriptions of \mathbb{R}^2 , Vectors in \mathbb{R}^3 , Vectors in \mathbb{R}^n .					
	6	Section 1.3: Vector Equations	-				
		Linear Combinations, A Geometric Description of Span $\{v\}$ and Span $\{u,v\}$, Linear Combinations in Applications.					
	7	Section 1.4: The Matrix Equation Ax = b	-				
		The Matrix Equation $Ax = b$, Existence of Solutions, Computation of Ax , Properties of the Matrix-Vector Product Ax .					
II		Module II					
	8	Section 1.5: Solution Sets of Linear Systems		1			
		Homogeneous Linear Systems, Parametric Vector Form, Solutions of Non-Homogeneous Systems.	12				
	9	Section 1.7: Linear Independence	13				

Columns, Sets of One or Two Vectors, Sets of Two or More Vectors.	Min. 15
10 Section 1.8: Introduction to Linear Transformations Introduction to Linear transformations, Matrix Transformations.	
Section 1.8: Introduction to Linear Transformations	
Linear Transformations	
12 Section 1.9: The Matrix of a Linear Transformation	
The Matrix of a Linear Transformation, Geometric Linear Transformation of \mathbb{R}^2 .	
13 Sec ion 1.9 The Matrix of a Linear Transformation	
Existence and Uniqueness Questions. (Topics up to and including Theorem 11).	
III Module III	
14 Section 2.1: Matrix Operations	
Matrix Operations, Sums and Scalar Multiples, Matrix Multiplication, Properties of Matrix Multiplication, Powers of a Matrix, The Transpose of a Matrix.	Min. 15
15 Section 2.2: The Inverse of a Matrix	
The Inverse of a Matrix (Example 3 is optional), Elementary Matrices (Proof of Theorem 7 is optional).	
16 Section 2.2: The Inverse of a Matrix	
An Algorithm for Finding A^{-1} , Another View of Matrix Inversion.	11
17 Section 2.8 : Subspaces of \mathbb{R}^n	
Subspaces of \mathbb{R}^n , Column Space and Null Space of a Matrix, Basis for a Subspace.	
18 Section 2.9: Dimension and Rank	
Coordinate Systems, The Dimension of a Subspace (Topics up to and including Theorem 15).	
IV Module IV	
19 Section 5.1: Eigen Vectors and Eigen Values	
	10

		The Characteristic Equation, Determinants (Topics up to and including Theorem 3).		Min. 15
	21	Section 5.2: The Characteristic Equation The Characteristic Equation, Similarity (Topics up to and including Theorem 4).		
	22	Section 5.3: Diagonalization Diagonalization (Proof of Theorem 5 is optional), Diagonalizing Matrices, Matrices Whose Eigen Values Are Not Distinct.		
V		Module V (Open Ended)	12	
	Dete Syste Matri Linea			

References

- 1. Elementary Linear Algebra, Howard Anton, Chris Rorres, Wiley Publications
- 2. Linear Algebra Done Right, 3/e, Sheldon Axler, Springer Nature, 2015.
- 3. Introduction to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge Press.
- 4. Basic Linear Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002.
- 5. Linear Algebra And its Applications, 4/e, Gilbert Strang, Cengage India Private Limited
- 6. Linear Algebra A Geometric Approach, S.Kumaresan, Prentice Hall of India.
- 7. Bretscher, Otto. Linear algebra with applications. Vol. 52. Eaglewood Cliffs, NJ: Prentice Hall, 1997.
- 8. Holt, Jeffrey. Linear Algebra with Applications. wh freeman, 2017.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

^{*}Optional topics are exempted for end semester examination

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	0	3	0	3	0	0
CO 2	1	3	2	2	3	0	3	0	3	0	0
CO 3	2	1	3	3	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	>	>	>	✓
CO 2	✓	✓	√	√	✓
CO 3	√	✓	√	√	√

Programme	BSc Mathematics Hor	nours				
Course Code	MAT4CJ203					
Course Title	REAL ANALYSIS I					
Type of	Major					
Course						
Semester IV						
Academic	200 – 299					
Level						
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours		
		per week	per week			
	4	3	2	75		
Pre-requisites	1.Mathematical Logic	and necessary exposure	to set theory.			
	2. Basic Calculus	2. Basic Calculus				
Course	After introducing the basic notions in set theory, the course develops into the					
Summary	construction of the R	construction of the Real number system. Thereafter Real functions are				
	introduced and the no	tions of limit and continu	uity are develop	oed.		

Course Outcomes (CO):

CO	CO Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate Proficiency in Set Theory Fundamentals and Real Number Properties	An	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam
CO2	Apply the completeness property of \mathbb{R} , and solve problems involving intervals and applications of the supremum property.	U	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam
CO3	Analyse sequences and their limits, apply limit theorems, and demonstrate an understanding of concepts such as monotone sequences, sub-sequences, and the Cauchy Criterion, as well as their applications in solving problems related to sequences and limits.	An	С	Internal Exam/ Assignment/Seminar/ Viva/Report/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook		action to Real Analysis, 4/e, Robert G Bartle, Donal & Sons (2011)	d R Sherbert	John
Module	Unit	Content	Hrs (45+30)	External Marks (70)
I		Introduction to Set theory		· · · · · · · · · · · · · · · · · · ·
	1	Section 1.1 - Sets and functions (for review only)	8	Min.15
	2	Section 1.2 - Mathematical Induction (Proofs of results included in practicum part).		
	3	Section 1.3 – Finite and Infinite sets.		
**	4	Section 1.3 – Countable and Uncountable sets.		
II		The Real numbers		
	5	Section 2.1 – The algebraic properties of \mathbb{R} .		
	7	Section 2.1 – The order properties of \mathbb{R} . Section 2.2 – Absolute value and the Real Line.		
	8		13	Min.15
		Section 2.3 – Completeness property of \mathbb{R} (Proofs included in Practicum).	13	1 41111.13
	9	Section 2.4 – Applications of the Supremum		
		property - 2.4.3 to 2.4.6 and 2.4.8 to 2.4.9 (All		
	10	other discussions included in Practicum).		
	10	Section 2.5 – Intervals – 2.5.2 to 2.5.4 (All other		
III		discussions included in Practicum). Sequences and Limits		
111	11	Section 3.1 – Sequences and their limits.		
	12	Section 3.1 – Problems to find limits of	_	
	12	sequence.		
	13	Section 3.2 – Limit theorems.		
	14	Section 3.2 – Problems using Limit theorems.	12	Min.15
	15	Section 3.3 – Monotone sequences – Monotone		
		Convergence Theorem.		
	16	Section 3.3 – Applications of Monotone		
		Convergence Theorem – Euler's number		
		introduction only.		
IV		Sequences and Limits (continued)		
	17	Section 3.4 – Sub sequences and the Bolzano		
		Weierstrass theorem (Second proof of Theorem		
		3.4.8 is omitted for external exam and limits		
		superior and inferior are included in practicum).		
	18	Section 3.4 – Problems using Divergence		
	1.0	criteria.	12	Min 10
	19	Section 3.5 – The Cauchy Criterion (Examples	12	Min.10
		3.5.9, 3.5.11 and Corollary 3.5.10 are included		
	20	in Practicum). Section 4.1. Limits of functions (Proofs included		
	20	Section 4.1- Limits of functions (Proofs included in Practicum).		
	21	Section 4.2: Limit theorems of functions (Proofs		
	<u> </u>	included in Practicum).		

	22	Section 4.3: Some extensions of limit concepts		
		(Proofs included in Practicum).		
\mathbf{V}		Practicum:		-
	in 15 study runnin	practicum sessions of two hours each via self- and group activities. The lecturer may assist by ag group discussions, supervising class seminars ferring library books for self-study and		
		reparation.		
	1	Section 1.2 - for detailed discussions including proofs		
	2	Section 2.3 – re do it with all the proofs		
	3	Section 2.4 – Worked out examples for applying the ideas of supremum and infimum and the existence of square root of 2		
	4	Section 2.5 – Characterization theorem for		
		intervals and representations of real numbers		
	5	Section 3.4 – discussions of limit inferior and limit superior with examples	30	
	6	Section 3.5 – Estimation of errors in contractive		
		sequences with examples		
	7	Section 3.6 – Properly divergent Sequences		
	8	Section 3.7 – Introduction to Infinite Series –		
		conditions for convergence – Harmonic Series		
	9	Section 3.7 – Comparison Tests with examples		
	10	Section 4.1 – Formulate a precise definition of		
	11	limit and illustrate with examples		
	11	Section 4.1 – Sequential Criterion for Limits for convergence and divergence with examples		
	12	Section 4.2 – Limit theorems for functions in		
		parallel to that of sequences.		
	13	Section 4.3 – One sided and infinite limits.		
	14	Section 11.1 – Open sets, their properties and		
		characterization.		
	15	Section 11.1 - Closed sets, their properties and		
D C		characterization.		

References

- 1. Tom.M. Apostol, Calculus I, Wiley & Sons.
- 2. Tom.M. Apostol, Mathematical Analysis, 2/e, Addison-Wesley.
- 3. Richard R Goldberg, Methods of Real Analysis, 2/e, Wiley
- 4. Raymond L Wilder, Introduction to the Foundations of Mathematics, 2/e, John WileySons

Optional Programming References for Practicum:

- SageMath Calculus Tutorial https://www.sagemath.org/calctut/limits.html
 SageMath 2D plotting https://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot.html#

^{*70} external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	2	3	0	3	0	3	0	0
CO 2	1	3	2	2	3	0	3	0	3	0	0
CO 3	3	2	3	3	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	>	√
CO 2	✓	√	√	√	√
CO 3	√	√	√	√	√

Programme	BSc Mathematics Honours						
Course Code	MAT4CJ204	MAT4CJ204					
Course Title	BASIC LINEAR AL	BASIC LINEAR ALGEBRA					
Type of Course	Major						
Semester IV							
Academic Level	200 – 299	200 – 299					
Course Details	Credit Lecture/Tutorial Practicum Total Hours						
		per week	per week				
	4	4		60			
Pre-requisites		stem of equations and the					
	2. Knowledge about r	natrices and matrix opera	tions.				
Course Summary	This course is a quick	k review of linear algebra	, intended for	students who have			
	already taken a previo	ous course in linear algeb	ora or have son	ne experience with			
		It begins with the conce					
	bases and dimension	bases and dimension. Linear transformations are introduced as 'natural maps'					
	between vector space	es. The course opens up	the classical	finite dimensional			
	inner product theory	for the canonical reduction	on of a matrix	as a special case of			
	a self-adjoint operator	r.					

Course Outcomes:

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand and apply concepts related to vector spaces and subspaces, including determining whether a set forms a subspace and finding the span of a set	U	C	Internal Exam/Assignm ent/Seminar/ Viva/ End Sem
CO2	Demonstrate proficiency in analysing null spaces, column spaces, and linear transformations, including understanding the kernel and range of a linear transformation and contrasting the properties of null space and column space.	An	P	Exam Internal Exam/Assignm ent/Seminar/ Viva/ End Sem Exam
CO3	Evaluate and apply concepts related to bases, dimensionality, and rank of vector spaces, including understanding bases for null space and column space, determining dimensions of subspaces, and applying the rank theorem to systems of equations.	E	С	Internal Exam/Assignm ent/Seminar/ Viva/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

[#] - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Book	Public			
Module	Unit	Content	Hrs (48+ 12)	Externa Marks (70)
I		Module I		
	1	Section 4.1: Vector Spaces and Subspaces Vector Spaces and Subspaces, Subspaces, A Subspace Spanned by a Set.		
	2	Section 4.2: Null Spaces, Column Spaces, and Linear Transformations. The Null Space of a Matrix, An Explicit Description of Nul A.		
	3	Section 4.2: Null Spaces, Column Spaces, and Linear Transformations. The Column Space of a Matrix, The Contrast Between Nul A and Col A.	14	Min 15
	4	Section 4.2: Null Spaces, Column Spaces, and Linear Transformations. Kernel and Range of a Linear Transformation.		
	5	Section 4.3: Linearly Independent Sets; Bases. Linearly Independent Sets; Bases, The Spanning Set Theorem.		
	6	Section 4.3: Linearly Independent Sets; Bases. Bases for Nul A and Col A, Two Views of a Basis.		
II		Module II		
	7	Section 4.4: Coordinate Systems. Coordinate Systems, A Graphical Interpretation of Coordinates, Coordinates in \mathbb{R}^n .		
	8	Section 4.4: Coordinate Systems. The Coordinate Mapping.		
	9	Section 4.5: The Dimension of a Vector Space. The Dimension of a Vector Space.		Min 15
	10	Section 4.5: The Dimension of a Vector Space. Subspaces of a Finite-Dimensional Space, The Dimensions of Nul A and Col A.	12	WIII 13
	11	Section 4.6: Rank Rank, The Row Space.		
	12	Section 4.6: Rank The Rank Theorem, Applications to Systems of Equations (Topics up to and including Example 5).		
III		Module III		
	13	Section 6.1: Inner Product, Length and Orthogonality The Inner Product, The Length of a Vector, Distance in \mathbb{R}^n .		
	13	Section 6.1: Inner Product, Length and Orthogonality Orthogonal Vectors, Orthogonal Complements, Angles in \mathbb{R}^2 and \mathbb{R}^3 .	12	Min 15

14		Section 6.2: Orthogonal Sets					
		Orthogonal Sets, An Orthogonal Projection (Topics up to					
		and including Example 4).					
	15	Section 6.2: Orthogonal	1				
		SetsOrthonormal Sets.					
	16	Section 6.4: The Gram-Schmidt Process	-				
		The Gram -Schmidt Process, Orthonormal Bases.					
16 5	Section 6.	4: The Gram -Schmidt Process	1				
		QR Factorization of Matrices.					
IV		Module IV					
	17 S	ection 7.1: Diagonalization of Symmetric Matrices					
		Diagonalization of Symmetric Matrices.					
	18 S	ection 7.1: Diagonalization of Symmetric Matrices	1				
		The Spectral Theorem. Spectral Decomposition.					
		19 Section 7.2: Quadratic 1	Forms	N. 15			
		Quadratic Forms (Topics up to and including Example 3),	10	Min 15			
		Classifying Quadratic Forms.					
		20 Section 7.4: The Singular Value Decompo	sition				
		The Singular Value Decomposition, The Singular Values of					
		an $m \times n$ Matrix, The Singular Value Decomposition					
		(Topics up to and including Example 4 only).					
V		OPEN ENDED	12				
				1			
	Linear	Algebra Lab Sessions					
		Mike Cohen, Practical Linear Algebra for Data Science, O'Re-098-12061-0.	illy, 201	9, ISBN			
	Jupyte	er: https://github.com/mikexcohen/LinAlg4DataScience					
	Choos	Choose lab demos and exercises for 12 hours as per lecturer's discretion.					
	For M	odule I & II, Ch 2, 3, 5, 6 of book for Lab. odule III, Ch 2 and Ch 9 of book for Lab. odule IV, Ch 14 of book for Lab.					

References

- 1. Elementary Linear Algebra: Application Version, 11/e, Howard Anton & Chris Rorres Wiley
- 2. Algebra Done Right, 3/e, Sheldon Axler, Springer Nature, 2015.

Python and Jupyter review in Ch 16 of book.

- 3. Introduction to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge Press.
- 4. Basic Linear Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002.
- 5. Linear Algebra, 2/e, Hoffman K and Kunze R, Prentice Hall of India,1991.
- 6. Bretscher, Otto. *Linear algebra with applications*. Vol. 52. Eaglewood Cliffs, NJ: Prentice Hall, 1997.
- 7. Blyth, Thomas Scott, and Edmund F. Robertson. *Basic linear algebra*. Springer Science & Business Media, 2013.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	2	3	0	3	0	3	0	0
CO 2	1	3	2	2	3	0	3	0	3	0	0
CO 3	3	2	3	3	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	>	>	>	√
CO 2	√	√	√	√	✓
CO 3	✓	√	√	✓	✓

Programme	BSc Mathematics Honours					
Course Code	MAT4CJ205					
Course Title	FUNDAMENTALS OF PYTHON AND SAGEMATH					
Type of Course	Major					
Semester	IV					
Academic Level	200-299					
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours		
	4	3	2	75		
Pre-requisites	 Basic knowledge to start a desktop/laptop computer A basic course in calculus with an understanding of differential and integral calculus (higher secondary level and one or two semester courses from Bsc) A basic course in linear algebra ((higher secondary level)) 					
Course Summary	3) A basic course in linear algebra ((higher secondary level)) In the first part of the course, it intends to give a quick introduction to writing python programs using various popular interfaces. How to handle data and save and read them files is introduced next along with the concepts of repeating the tasks using conditionals and loops. The problems connected with matrices and arrays is solved using the python module numpy. The python module SymPy is used to do various mathematical problems related with symbolic computations. A brief introduction of python module pandas is given, which is used to do data analysis. Using the Python programming structure, an introduction to the advance mathematics software sagemath is given in the second part of the course. Various practical problems making use of concepts from the calculus and linear algebra are to be solved using the sagemath software so that the students will come to know some of the applications of mathematics in real life.					

Course Outcomes (CO):

СО	CO Statement	Cogniti ve Level*	Knowledg e Category #	Evaluation Tools used
CO1	Develop proficiency in fundamental to advanced Python programming concepts, including variables, data types, control structures, functions, modules, file handling, and matrix operations.	С	С	Internal Exam/Quiz/E nd Sem
CO2	Demonstrate competence in data visualization techniques using Matplotlib, encompassing plotting mathematical functions, 2D and 3D graphics, and animated plots.	Ap	С	Internal Exam /Assignment/ End Sem
CO3	Develop proficiency in symbolic computation with SymPy, data manipulation with Pandas, and algebraic computations with SageMath, enabling them to solve diverse mathematical problems numerically and analytically.	С	С	Internal Exam /viva/ Seminar/End Sem

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook	1. Ajith Kumar B.P., Python for Education,					
Module			(45+ 30)			
		Introductory Python and Arrays				
		(Text 1: Chapter 2, Chapter 3)				
	1	Section 2.1: Getting started with Python				
		Section 2.2: Variables and Data Types, Keywords,				
		Section 2.3: Operators and their Precedence.				
	2	Section 2.4: Python Strings	1			
		Section 2.5: Python Lists				
		Section 2.6: Mutable and Immutable Types.				
		Section 2.7: Input from the Keyboard				
		Section 2.8: Python Syntax, Colon & Indentation				
	3	Section 2.9: Controlling the Programe Flow				
I		Section 2.10: Iteration: for loops				
-		Section 2.11: Conditional Execution: if, elif and else	12			
		Section 2.12: Modify loops: break and continue				
	4	Section 2.15: Functions	1			
		Section 2.17: Python Modules and Packages.				
		Section 2.18: File Input/Output				
		Section 2.19: Formatted Printing.				
		Section 2.21: Matrices in pure Python.				
	5	All topics up to Section 3.1,				
		Section: 3.1: NumPy Arrays				
	6	Section: 3.2: Vectorizing Functions.				

		Data Visualization (Text 1: Chapter 4)						
	7	Section: 4.1: The Matplotlib Module						
	8	Section: 4.2: Plotting mathematical functions						
		Section: 4.3: Plotting Error Bars,						
II		Section: 4.4: Simple 2D animation.						
	9	Section: 4.5: Famous Curves						
		Section: 4.6: 2D plot using colors.						
	10	Section: 4.7: 3D Plots.						
		Introduction to SymPy and Pandas (Text 1: Chapter 5 and Chapter 6)						
	11	All topics up to Section 5.1,						
		Section 5.1: SymPy, Symbolic Computation in Python.						
***	12	Section 5.2: SymPy, Derivative and Integral						
III	13	Section 5.3: SymPy, Operation on sets	10					
	14	14 Section 6.1: Series						
	15 Section 6.2: Data Frame							
	16	6 Section 6.3: Practical Examples						
	Sagemath – An Introduction							
	(T	xt 2: Chapter 1, For units 17,18,19)						
	17	Getting and installing sagemath in Windows, Ubuntu OS						
		Using sagemath using cocalc (online)						
		Section 1.1: Using Sage as a Calculator						
		Section 1.2: Using Sage with Common Functions Section 1.3: Using Sage for Trigonometry						
IV	18	Section 1.3: Using Sage for Trigonometry						
	10	Section 1.5: Matrices and Sage, Part One 1.5.1: A First Taste of Matrices	13					
	19	1.5.3: Doing the RREF in Sage Section 1.5: Using Sage to Manipulate Polynomials						
	·	xt 3: Chapter 2, 3, 5, For units 20,21,22)						
	20	Section 2.1: Plotting Graphs						

	Section 3.1: The Derivative	
21	Section 3.2: Higher-Order Derivatives	
22	Section 5.1: Antiderivatives (Indefinite Integral),	
	Section 5.2: Riemann Sums and the Definite Integral	
	All topics up to 5.2.1,	
	5.2.1: Riemann Sum Using Left Endpoints	
	Practical (Open-ended)	
	Online References for Practical	30
2 S 3 G 4 S 5 G	Python official website and documentation, https://www.python.org/ Spyder official website and documentation, https://www.spyder-ide.org/ Getting Started: Python and IDLE, MIT Courseware, https://web.mit.edu/6.s189/www/handouts/GettingStarted .html Jupyter Notebook, https://jupyter.org/ Google Colaboratory (colab), https://colab.google/ Pydroid 3 IDE for Android (https://play.google.com/store/apps/details?id=ru.iiec.pyd roid3&hl=en_US&pli=1) with Pydroid 3 repository plugin (https://play.google.com/store/apps/details?id=ru.iiec.pyd roid3.quickinstallrepo≷=US).	
Pract	ical problems in basic Python	
1)	Write a programme to work as a basic Income Tax Calculator	
2)	Write a program that takes the length of an edge (an integer) as input and prints the cube's surface area as output.	
3)	Write a loop that counts the number of space characters in a string. Recall that the space character is represented as ''.	
4)	Write a while loop that computes the factorial of a given integer N.	

- 5) Write a program that computes square roots.
- 6) Write a programme for data Encryption based on Caeser shift.
- 7) Develop a program that computes the Flesch Index for a text file.
- 8) Using a List to Find the Median of a Set of Numbers
- 9) Finding the Mode of a List of Values.

Numerical methods using python (Text1: Chapter 7)(7.1 - 7.10, 7.12)

- 1) Evaluate a Taylor series numerically.
- 2) Interpolate a function using
 - a) Newton's forward interpolation
 - b) Newton's backward interpolation
 - c) Lagrange's Interpolation
 - d) Newton's General Interpolation
- 3) Find integral of function using
 - a) Trapezoidal rule
 - b) Simpson's 1/3-rule
- 4) Find derivative of function numerically.
- 5) Solve first order differential equations numerically.
 - a) Euler method
 - b) Fourth order Runge-Kutta method
- 6) Solve algebraic equations numerically.
 - a) The Bisection method
 - b) Regula Falsi Method

Practical problems using numpy, matplotlib, pandas and sympy

- 1) Various vector operations. such as dot product, cross product and divergent using numpy module.
- 2) Various matrix operations such as determinant, inverse and transpose using numpy module.
- 3) Solve system of linear equations using numpy module.
- **4)** Plot various 2-D, 3-D curves using matplotlib module.

- 5) Plot various 3-D surfaces using matplotlib module.
- 6) Find maxima and minima of a function using SymPy module.
- 7) Necessary data analysis of a given data using pandas module.

Practical problems in Sage

- 1) Solve a system of linear equations (Text 2)
- 2) Constrained Optimization by Lagrange Multipliers (Text 2, 4.18.2)
- 3) Traffic Flow (Text 3)
- 4) Minimum Cost (Text 3)
- 5) Packaging (Minimum Surface Area) (Text 3)
- 6) Maximize Revenue (Text 3)
- 7) Area Between Curves (Text 3)
- 8) Average Value and mean value theorem (Text 3, 6.2)
- 9) Newton's Method to find approximate roots (Text 3)

References:

- 1 Amit Saha, Doing Math with Python, No Starch Press, 2015.
- 2 Vernon L. Ceder, The Quick Python Book, Second Edition, Manning.
- 3 Python tutorial online, https://www.geeksforgeeks.org/python-programming-language/
- 4 2D plotting, https://doc.sagemath.org/html/en/reference/plotting/sage/plot/plot.html
- 5 3D Graphics, https://doc.sagemath.org/html/en/reference/plot3d/index.html
- 6 Linear Algebra, https://doc.sagemath.org/html/en/tutorial/tour_linalg.html
- 7 John Harris, Karen Kohl, and John Perry, Peering into Advanced Mathematics through Sage-colored Glasses
- 8 Paul Zimmermann, Alexandre Casamayou, Computational Mathematics with SageMath, https://www.sagemath.org/sagebook/english.html
 Kenneth A Lambert, Fundamentals of Python First Programs, Edn 2, Cengage

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of ${\bf COs}$ with ${\bf PSOs}$ and ${\bf POs}$:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	3	1	3	2	3	3	1	1	2
CO 2	2	2	3	1	3	2	3	3	1	1	2
CO 3	2	2	3	1	3	2	3	3	1	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Quiz
- Practical Based Assessment
- Final Exam (70%)

	Internal Exam	Assignment	Semi nar	Quiz	Viva	Practical based assessment	End Semester Examinations
CO 1	1			√		√	√
CO 2	✓	√				√	√
CO 3	√		√		√	√	√

Programme	B.Sc. Mathematics Ho	B.Sc. Mathematics Honours						
Course Code	MAT5CJ301	MAT5CJ301						
Course Title	REAL ANALYSIS I	I						
Type of Course	Major							
Semester V								
Academic	300 – 399							
Level								
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	3	2	75				
Pre-requisites	1. Mathematical Logi	c and necessary exposure	to set theory.					
	2. Basic Calculus							
	3. Real Analysis I							
Course	Continuous real func	tions are introduced rigor	rously using t	he epsilon-delta				
Summary	1	uivalent sequential crit						
		Riemann) Integrable funct						
	by the fundamental theorem of calculus connecting the two notions. The							
		h a discourse on series of						
		atibility of the above the	ree notions w	ith the limiting				
	operations on series of	of functions.						

CO	Statement Cognitive		Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse and explain the concept	An	C	Internal
	of continuous functions and their			Exam/Assignment/
	properties on intervals, and apply			Seminar/
	the principles of uniform			Viva/Report/ End
	continuity.			Sem Exam
CO2	Analyse the vitality of continuous	An	С	Internal
	functions when they are defined			Exam/Assignment/
	on intervals.			Seminar/
				Viva/Report/ End
				Sem Exam
CO3	Apply the derivative and the	Ap	P	Internal
	Mean Value Theorem to solve			Exam/Assignment/
	problems and prove related			Seminar/
	theorems.			Viva/Report/ End
				Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook		action to Real Analysis, 4/e, Robert G Bartle, Donald R	Sherbert Jo	hn
Module	Unit	& Sons(2011) Content	Hrs (45+30)	Marks Ext:70
I		Continuous Functions	(10100)	Linero
	1	Section 5.1 – Continuous functions		
	2	Section 5.3 – Continuous functions on intervals —		
		5.3.1 to 5.3.5		
	3	Section 5.3 – from 5.3.7 - 5.3.10	14	Min.15
	4	Section 5.4 – Uniform Continuity-up to 5.4.3		
	5	Section 5.4 – Uniform Continuity-5.4.4 to		
		5.4.14(proof of Weierstrass Approximation Theorem		
		is optional)		
	6	Selected problems from the above sections.		
II		Differentiation		
	7	Section 6.1 – The Derivative – 6.1.1 to 6.1.7		
	8	Section 6.2- The Mean Value Theorem - 6.2.1 to	10	M: 15
	0	6.2.6	10	Min.15
	9	Section 6.2 - from 6.2.7 to 6.2.9	1	
	10	Section 6.2-The Mean Value Theorem- 6.2.10 to 6.2.13		
	11	Selected problems in the above sections.		
III	11	The Riemann Integral		
111	12	Section 7.1 – Riemann Integral – up to 7.1.4 (a)	1	
	13	Section 7.1 – from 7.1.5 to 7.1.7		
	10	(proof of 7.1.7 is optional)		
	14	Section 7.2 – Riemann Integrable functions – 7.2.1		
		to 7.2.5 (Examples 7.2.2 are optional)		
	15	Section 7.2 – from 7.2.7 to 7.2.13	14	Min.20
	16	Section 7.3 – The Fundamental Theorem –	-	
		7.3.1 to7.3.7		
	17	Section 7.3 – from 7.3.8 to 7.3.18 (proof of theorem		
		7.3.18 is optional)		
	18	Selected problems in the above sections.		
IV		Sequences and Series of functions	=	
	19	Section 8.1 – Pointwise and Uniform Convergence –		
	20	8.1.1 to 8.1.3	_	3.50 4.0
	20	Section 8.1 – from 8.1.4 to 8.1.10	7	Min.10
	21	Section 8.2 – Interchange of limits – 8.2.1		
X 7	22	Section 8.2 – Interchange of limits- 8.2.3		
\mathbf{V}	The	Practicum:		
	_	oal is for the students to learn the following selected		
	_	s in 15 practicum sessions of two hours each via self-		
		and group activities. The lecturer may assist by ng group discussions, overseeing class seminars and		
		ing library books for self-study and note preparation.		
	1	Section 5.2 – Combinations of continuous functions	30	

2	Section 5.6 – from 5.6.5 to 5.6.7	
3	Section 6.1 – Inverse Functions – 6.1.8 to 6.1.10	
4	Section 6.3 – from 6.3.5 to 6.3.7	
5	Section 6.4 – Taylor's theorem – 6.4.1 to 6.4.4	
6	Section 6.4 – from 6.4.5 to 6.4.8	
7	Section 9.1 – Absolute Convergence – 9.1.1 to 9.1.3	
8	Section 9.1 – 9.1.4 to 9.1.5	
9	Section 9.2 – Limit Comparison Test with examples	
10	Section 9.2 – Root Test with examples	
11	Section 9.2 – Ratio Test with examples	
12	Section 9.2 – Integral Test with examples	
13	Section 9.2 – Raabe's Test with examples	
14	Section 9.3 – Alternating Series Test	
15	Section 9.4 – Infinite Series – Series of Functions –	
	9.4.1 to 9.4.7	

Reference

- 1. Apostol, Tom M. Calculus, Volume 1. John Wiley & Sons, 1991.
- 2. Tom.M. Apostol, Mathematical Analysis, 2/e, Addison-Wesley, 2002.
- 3. Richard R Goldberg, Methods of Real Analysis, 2/e, Wiley, 2020
- 4. Raymond L Wilder, Introduction to the Foundations of Mathematics,2/e, John Wiley & Sons
- 5. Malik, Subhash Chandra, and Savita Arora. Mathematical analysis. New Age International, 1992.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

^{*}Optional topics are exempted for end semester examination

$\label{eq:mapping of COs with PSOs and POs:} \\$

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	2	1	2	0	2	0	3	0	0
CO 2	2	2	2	1	2	0	2	0	3	0	0
CO 3	3	2	3	1	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	√	√	>	>	√
CO 2	√	√	✓	✓	✓
CO 3	✓	√	✓	✓	✓

Programme	B.Sc. Mathematics Honours								
Course Code	MAT5CJ302	MAT5CJ302							
Course Title	ABSTRACT ALGEBRA I								
Type of Course	Major								
Semester V									
Academic Level	300-399								
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours					
	4	4	-	60					
Pre-requisites	Basic set theory, alge techniques etc.	bra of Integers, operation	s on functions	, basic proof					
Course Summary	Structures, Groups, I Theory of Groups. I Groups, Groups of Pe the Theorem of Lagra or Homomorphisms.	This course explores the algebraic concepts of Binary Operations, Binary Structures, Groups, Rings, Integral Domains and Fields. We further study the Theory of Groups. Elementary properties, Subgroups, Finite Groups, Cyclic Groups, Groups of Permutations, Orbits, Cycles, Alternating Groups, Cosets and the Theorem of Lagrange are studied. Then we study mappings between groups or Homomorphisms. Finally, the Open-ended section points to Generating sets, Factor Groups and Field of Quotients of an Integral Domain.							

CO	Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Discuss about binary operations, isomorphic binary structures and groups	U	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO2	Analyse and classify subgroups and cyclic groups, and determine their properties using group theory.	An	Р	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO3	Evaluate and apply theorems related to cosets, Lagrange's theorem, homomorphisms, rings, and fields to solve complex algebraic problems.	Е	F	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text book	A first of India, 20	course in abstract algebra, Fraleigh, John B Seventh Edition, I 2003	Pearson Edu	cation	
le	Unit	Content	Hrs	Marks	
Module			(48+12)	Ext(70)	
I		Module I			
	1	Section 2- Binary Operations (2.1 to 2.10)			
	2	Section 2- Binary Operations (2.11 to 2.25)			
	3	Section 3- Isomorphic Binary Structures (3.1 to 3.11).			
	4	Section 3- Isomorphic Binary Structures (3.12 to 3.17)	12	Min.15	
	5	Section 4- Groups (4.1 to 4.14)			
	6	Section 4- Groups – Elementary Properties of Groups, Finite Groups and Group tables (4.15 onwards)			
II		Module II			
	7	Section 5- Subgroups (5.1 to 5.16)			
	8	Section 5 -Subgroup - Cyclic Subgroups (5.17 to 5.23)			
	9	Section 6 -Cyclic Groups (6.1 to 6.9) (Proof of Theorem 6.3 is optional)	14	Min.15	
	10	Section 6- Cyclic Groups (6.10 to 6.17) (Proof of Theorem 6.14 is optional).1			
	11	Section 8-Groups of Permutations (up to 8.6)			
	12	Section 8- Groups of Permutations (8.7 to 8.18)			
III		Module III			
	13	Section 9 - Orbits, Cycles, and the Alternating Groups (Up to 9.10)			
	14	Section 9 - Orbits, Cycles, and the Alternating Groups (9.11 to 9.21) (Proof 2 of theorem 9.15 is optional).	10	Min 15	
	15	Section 10- Cosets and the theorem of Lagrange (Up to 10.9)	10	Min.15	
	16	Section 10- Cosets and the theorem of Lagrange (10.10 to 10.14)			

IV		Module IV		
	17	Section 13- Homomorphisms (13.1 to 13.10)		
	18	Section 13-Homomorphism (13.11 to 13.20)		
	19	Section 18-Rings and Fields (18.1 to 18.13)	12	Min.15
	20	Section 18-Rings and Fields (18.14 to 18.18)		
	21 Section 19-Integral Domains (19.1 to 19.8)			
	22	Section 19-Integral Domains (19.9 to 19.15)		
V		Module V (Open Ended)		-
		Generating Sets in Groups		
		Factor Groups	12	
		The Field of Quotients of an Integral Domain		

References

- 1. Herstein, Israel Nathan. *Topics in algebra*. John Wiley & Sons, 1991.
- 2. Gallian, Joseph. Contemporary abstract algebra. Chapman and Hall/CRC, 2021.
- 3. Wallace, David AR. Groups, rings and fields. Springer Science & Business Media, 2001
- 4. Reis, Clive. *Abstract algebra: an introduction to groups, rings and fields*. World Scientific Publishing Company, 2011.
- 5. Allan Clark, Elements of Abstract Algebra, Dover Publications, 1984
- 6. C Musili, Introduction to Rings and Modules, Narosa Publications, 2009

Suggested Programming Exercises for Open-Ended

- 1. Form congruence groups, their Cayley tables (Section 9.2, Ref (3)).
- 2. Form symmetric groups of various orders, list the elements, find the power of some elements, find out the product of some of the elements. Find the order of the elements. Form a group table using conditionals and loops. (Section 9.3, Ref (3) or Ref (1)).
- 3. List S_3 . Find a subgroup from this group. How many distinct subgroups can be found from this group? List all of them.
- 4. Form the Dihedral group D 4, check if it is abelian using is_abelian(). Conduct the same experiments as listing the elements ,finding the orders etc as above. (Section 9.4, Ref (3) or Ref (1)).
- 5. Test the command is normal () on a few subgroups of S_3 . (Ref (1)).
- 6. Create cyclic groups. (Section 9.5, Ref (3)).

- 7. Form finitely generated abelian groups. (Section 9.6, Ref (3)).
- 8. Form a subgroup of a group (say, S₃) (Section 9.8, Ref (3)).

References

- 1. Robert A. Beezer; Group Theory and SAGE: A Primer, http://people.reed.edu/~davidp/332/sage-group-theory.pdf
- 2. Group Theory and Sage SageMath tutorial https://doc.sagemath.org/html/en/thematic_tutorials/group_theory.html
- 3. Ajit Kumar, Vikas Bist; Group Theory An Expedition with SageMath, Narosa Publishing House.
- 4. Thomas W. Judson, Robert A. Beezer; Abstract Algebra Theory and Applications with Sage Exercises for Abstract Algebra, http://abstract.ups.edu/download/ aata-20130816.pdf

^{*}Optional topics are exempted for end semester examination.

^{**70} external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	0	2	0	0	0	2	0	0
CO 2	1	2	3	0	2	0	2	0	3	0	0
CO 3	0	1	2	3	2	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	√	✓
CO 2	✓	✓	✓	✓	~
CO 3	√	√	√	√	√

Programme	B.Sc. Mathematics H	onours								
Course Code	MAT5CJ303									
Course Title	COMPLEX ANALYSIS I									
Type of Course	Major									
Semester V										
Academic	300-399									
Level										
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours						
		per week	per week							
	4	4	-	60						
Pre-requisites	Paging of Pagl Numb	er System and Calculus.								
Fie-requisites	Dasies of Real Numb	er System and Calculus.								
Course	This course begins w	ith the concepts of compl	lex numbers. c	omplex plane, polar						
Summary		mbers, powers and root								
		power functions and nth		-						
	limits, continuity, dif	ferentiability and analytic	city of comple	x functions. Cauchy						
	Riemann equations as	nd Harmonic conjugates a	are also studie	d. Finally the course						
	discusses some sta	ndard complex function	ons like Exp	onential functions,						
	Logarithmic function	s, Trigonometric and Hyp	perbolic function	ons.						

CO	Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand and explain the properties and representations of complex numbers, including their polar form and operations.	U	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO2	Apply the principles of limits, continuity, and differentiability to complex functions and utilize the Cauchy-Riemann equations.	Ap	Р	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO3	Evaluate and create complex exponential, logarithmic, trigonometric, and hyperbolic functions, understanding their properties and applications.	С	F	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

[#] - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook	_	Complex Analysis (Third Edition): Dennis G. Zill & Patric D. Shanahan, Jones & Bartlett Learning, 2018.								
Module	Unit	Content	Hrs 60	External Marks (70)						
		Module I								
	1	Section 1.1-Complex Numbers and Their Properties		Min.15						
_	2	Section 1.2-Complex Plane	1.0							
I	3	Section 1.3- Polar Form of Complex Numbers	13							
	4	Section 1.4- Powers and Roots								
	5									
		Module II								
	6	Section 2.1 -Complex Functions								
	7	Section 2.2- Complex Functions as Mappings- up to and including Example 4.		Min.15						
п	8	Section 2.4- Special Power Functions- The Power Function z^n (All the topics in 2.4.1)	12							
	9									
	10	•								
		Functions and Example 9. Module III								
	11	Section 3.1- Limits and Continuity-Limits (All the topics in 3.1.1)								
	12	Section 3.1- Limits and Continuity-Continuity (Topics in 3.1.2, up to Example 7.)								
	13	Section 3.1-Limits and Continuity-Continuity (Theorem 3.1.4 to up to and including a bounding property.		Min.20						
III	14	Section 3.2- Differentiability and Analyticity- up to and including Example 2.	15							
	15	Section 3.2- Differentiability and Analyticity- All the topics after Example 2.								
	16	Section 3.3- Cauchy-Riemann Equations-up to and including Theorem 3.3.2 Section 3.3 - Cauchy Riemann Equations: -All the topics								
	17									
	18	Section 3.4 - Harmonic Functions]							
		Module IV								
IV	19	Section 4.1 Exponential and Logarithmic Functions- Complex Exponential Function (Topics in 4.1.1 up to and including Periodicity)	8	Min.15						

	20	Section 4.1 Exponential and Logarithmic Functions- Complex Logarithmic Function (Topics in 4.1.2 up to and including Example 4)		
	21			
	22	Section 4.3 Trigonometric and Hyperbolic Functions- Complex Hyperbolic Functions (All the topics in 4.3.2)		
		Module V (Open Ended)		
\mathbf{V}	Linear Mappings, Reciprocal Functions		12	
		Branches, Branch Cuts and Points, Complex Powers		
		Inverse Trigonometric and Hyperbolic Functions.		

References

- 1. Brown, James Ward, and Ruel V. Churchill. Complex variables and applications. McGraw-Hill, 2009.
- 2. Stein, Elias M., and Rami Shakarchi. Complex analysis. Vol. 2. Princeton University Press, 2010.
- 3. Burckel, Robert B. An Introduction to Classical Complex Analysis: Vol. 1. Vol. 64. Birkhäuser, 2012
- 4. Hormander, Lars. An introduction to complex analysis in several variables. Elsevier, 1973.
- 5. Priestley, Hilary A. Introduction to complex analysis. OUP Oxford, 2003.
- 6. Silverman, Richard A. Introductory complex analysis. Courier Corporation, 2013
- 7. Bak, Joseph, Donald J. Newman, and Donald J. Newman. *Complex analysis*. Vol. 8. New York: Springer, 2010.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	0	0	3	0	0	0	2	0	0
CO 2	0	3	1	0	2	0	3	0	3	0	0
CO 3	1	0	3	0	2	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	>	>	√
CO 2	√	√	√	✓	~
CO 3	√	√	✓	√	✓

Programme	B.Sc. Mathematics H	onours				
Course Code	MAT6CJ304 / MAT8MN304					
Course Title	COMPLEX ANALYSIS-II					
Type of Course	Major					
Semester VI						
Academic	300-399					
Level						
	Credit	Lecture/Tutorial	Practicum	Total Hours		
Course Details		per week	per week			
Course Details	4	4	-	60		
	Idea of complex num	bers, Polar representation	ns, Differentiab	ility and		
Pre-requisites	Analyticity.					
	We continue from	Complex Analysis-I and	d begin by di	scussing complex		
Course	integrals, followed	by Cauchy-Goursat Th	neorem. Indepe	endence of path,		
Summary	Cauchy's Integral for	rmula, sequence and seri	es of complex	numbers are next		
	studied. It is then follo	owed by Taylor series, La	aurent series. ze	eros and poles, and		
	Residue Theorem. Ap	oplications of Residue the	eorem are also	discussed.		

СО	Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand and apply the principles of real and complex integrals, including the Cauchy-Goursat theorem	Ap	P	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO2	Analyse the independence of path and evaluate the Cauchy's integral formulas, along with understanding their consequences and applications.	An	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO3	Create and utilize Taylor and Laurent series, and apply the residue theorem to evaluate complex functions and integrals.	С	F	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module Unit Content Hrs (60)	External Marks (70) Min.15
I Section 5.1-Real Integrals. 2 Section 5.2-Complex Integrals-up to and including Example 2 3 Section 5.2- Complex Integrals- All the topics after Example 2 4 Section 5.3- Cauchy- Goursat Theorem-up to and including Example 4. 5 Section 5.3 -Cauchy- Goursat Theorem-All the topics after Example 4. Module II 6 Section 5.4- Independence of Path Section 5.5 -Cauchy's Integral Formulas and Their Consequences- Cauchy's Two Integral Formulas (All the topics in 5.5.1) Section 5.5 -Cauchy's Integral Formulas and Their Consequences- Some Consequences of the Integral	Min.15
I Section 5.2-Complex Integrals-up to and including Example 2 3 Section 5.2- Complex Integrals- All the topics after Example 2 4 Section 5.3- Cauchy- Goursat Theorem-up to and including Example 4. 5 Section 5.3 -Cauchy- Goursat Theorem-All the topics after Example 4. Module II 6 Section 5.4- Independence of Path Section 5.5 -Cauchy's Integral Formulas and Their Consequences- Cauchy's Two Integral Formulas (All the topics in 5.5.1) Section 5.5 -Cauchy's Integral Formulas and Their Consequences- Some Consequences of the Integral	
Example 2 3 Section 5.2- Complex Integrals- All the topics after Example 2 4 Section 5.3- Cauchy- Goursat Theorem-up to and including Example 4. 5 Section 5.3 - Cauchy- Goursat Theorem-All the topics after Example 4. Module II 6 Section 5.4- Independence of Path Section 5.5 - Cauchy's Integral Formulas and Their Consequences- Cauchy's Two Integral Formulas (All the topics in 5.5.1) Section 5.5 - Cauchy's Integral Formulas and Their Consequences- Some Consequences of the Integral	
I Example 2 4 Section 5.3- Cauchy- Goursat Theorem-up to and including Example 4. 5 Section 5.3 - Cauchy- Goursat Theorem-All the topics after Example 4. Module II 6 Section 5.4- Independence of Path Section 5.5 - Cauchy's Integral Formulas and Their Consequences- Cauchy's Two Integral Formulas (All the topics in 5.5.1) Section 5.5 - Cauchy's Integral Formulas and Their Consequences- Some Consequences of the Integral	
4 Section 5.3- Cauchy- Goursat Theorem-up to and including Example 4. 5 Section 5.3 -Cauchy- Goursat Theorem-All the topics after Example 4. Module II 6 Section 5.4- Independence of Path Section 5.5 -Cauchy's Integral Formulas and Their 7 Consequences- Cauchy's Two Integral Formulas (All the topics in 5.5.1) Section 5.5 -Cauchy's Integral Formulas and Their Consequences- Some Consequences of the Integral	Min.15
II Section 5.5 -Cauchy's Integral Formulas and Their Section 5.5 -Cauchy's Integral Formulas (All the topics in 5.5.1) Section 5.5 -Cauchy's Integral Formulas and Their Consequences- Cauchy's Integral Formulas and Their Section 5.5 -Cauchy's Integral Formulas and Their Consequences- Some Consequences of the Integral	Min.15
Module II 6 Section 5.4- Independence of Path Section 5.5 - Cauchy's Integral Formulas and Their Consequences- Cauchy's Two Integral Formulas (All the topics in 5.5.1) Section 5.5 - Cauchy's Integral Formulas and Their Consequences- Some Consequences of the Integral	Min.15
Section 5.5 -Cauchy's Integral Formulas and Their Consequences- Cauchy's Two Integral Formulas (All the topics in 5.5.1) Section 5.5 -Cauchy's Integral Formulas and Their Consequences- Some Consequences of the Integral	Min.15
Section 5.5 -Cauchy's Integral Formulas and Their Consequences- Cauchy's Two Integral Formulas (All the topics in 5.5.1) Section 5.5 -Cauchy's Integral Formulas and Their Consequences- Some Consequences of the Integral	Min.15
Section 5.5 -Cauchy's Integral Formulas and Their Consequences- Some Consequences of the Integral	Min.15
Formulas (All the topics in 5.5.2)	
Section 6.1 -Sequences and Series- up to and including Example 4.	
Section 6.1- Sequences and Series- All the topics after Example 4.	
Module III	
Section 6.2 -Taylor Series-up to and Excluding Theorem 6.2.4.	Min.15
Section 6.2- Taylor Series-From Theorem 6.2.4 to Example 3.	
III Section 6.3 -Laurent Series-up to and including Example 1. 14	
Section 6.3- Laurent Series- All the topics after Example 1(proof of Laurent's Theorem is optional)	
Section 6.4 -Zeros and Poles- up to and including Example 2.	
Section 6.4- Zeros and Poles- All the topics after Example 2.	
Module IV	
Section 6.5 -Residues and Residue Theorem-up to and including Example 3.	
IV Section 6.5 - Residues and Residue Theorem-All the topics after Example 3.	
Section 6.6- Some Consequences of the Residue Theorem- Evaluation of Real Trigonometric Functions (up to and including example 1 of 6.6.1)	

		Section 6.6 -Some Consequences of the Residue		Min.15		
	20	Theorem- Evaluation of Real Improper Integrals (up to				
	and including Example 2) Section 6.6 -Some Consequences of the Residue					
	21					
	Theorem- Theorem 6.6.1 and Example 3.					
	22	Section 6.6 -Some Consequences of the Residue				
	22	Theorem- Theorem 6.6.2 and Example 4.				
		Module V (Open Ended)				
${f v}$		Definite Integrals, Line Integrals in the Plane, Indented				
•		Contours	12			
		Integration along a Branch Cut, The Argument Principle				
		Rouche's Theorem and its applications				
Referen	References					
	1 Brown, James Ward, and Ruel V. Churchill. Complex variables and					
		applications. McGraw-Hill, 2009.				
	2	Stein, Elias M., and Rami Shakarchi. Complex analysis. Vol. 2. Princeton University Press, 2010.				
	3	Burckel, Robert B. An Introduction to Classical Complex A	Analysis	s: Vol. 1.		
		Vol. 64. Burkhouse, 2012.				
	4	4 Hormander, Lars. An introduction to complex analysis in several variables. Elsevier, 1973.				
	5	Priestley, Hilary A. Introduction to complex analysis. OUP	Oxford	1, 2003.		
	6	Silverman, Richard A. Introductory complex analysis. Cou 2013.	rier Coi	rporation,		
	7	Bak, Joseph, Donald J. Newman, and Donald J. Newman. <i>Comp</i> 8. New York: Springer, 2010.	olex ana	<i>lysi</i> s. Vol.		

^{*}Optional topics are exempted for end semester examination.

^{**70} external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	1	0	3	0	3	0	3	0	0
CO 2	1	2	1	0	2	0	3	0	3	0	0
CO 3	1	2	1	0	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	>	>	>	✓
CO 2	✓	✓	√	√	✓
CO 3	√	✓	√	√	√

Programme	B. Sc. Mather	B. Sc. Mathematics Honours					
Course Code	MAT6CJ305 /	MAT6CJ305 / MAT8MN305					
Course Title	ELEMENTA	RY NUMBER THEOR	RY				
Type of Course	Major						
Semester	VI						
Academic Level	300-399						
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Arithmetic of	integers, basic set theory	and proof tech	niques.			
Course Summary	Euclidean algo equations like Arithmetic, dis Following that theorem, and F	We start number theory with the division algorithm, g.c.d., and the Euclidean algorithm for computing it, essential for solving Diophantine equations like ax + by = c. We then prove the Fundamental Theorem of Arithmetic, discuss the infinitude of primes and the sieve of Eratosthenes. Following that, we cover Linear Congruences, the Chinese Remainder theorem, and Fermat's Little Theorem. Finally, we explore Wilson's Theorem, Euler's Phi Function, and Euler's Theorem.					

Course Outcomes:

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply the division algorithm and Euclidean algorithm to compute greatest common divisors (gcd) and solve related divisibility problems.		С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	Solve Diophantine equations for integer solutions, deduce prime factorization through the fundamental theorem of arithmetic, and identify prime numbers using the sieve of Eratosthenes.	Ap	С	Internal Exam/ Assignment/ Seminar/Viv a/ End Sem Exam
CO3	Apply the properties of congruence and the Chinese Remainder Theorem to solve systems of linear congruences.		С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)
- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive
Knowledge (M)

Textbook	Eleme	entary Number Theory, David Burton, M, Seventh Edition	, Mcgraw	– Hill (2007).
Module	Unit	Content	Hrs (60)	External Marks (70)
I		Module I		
	1	Section 2.2 The division algorithm (proof of theorem 2.1 omitted).	12	Min.15
	Section 2.3 The greatest common divisor - up to and including theorem 2.3 and its corollary.			
	3	Section 2.3 The greatest common divisor - All topics from definition 2.3 onwards.		
	4	Section 2.4 The Euclidean algorithm - up to Theorem 2.7.		
	5	Section 2.4 The Euclidean algorithm - All topics from Theorem 2.7 onwards.		
II		Module II		
	6	Section 2.5 The Diophantine equation $ax+by = c - up$ to and including Theorem 2.9.		
	7	Section 2.5 - All topics from Example 2.4 onwards.		
	8	Section 3.1 The fundamental theorem of arithmetic - up to Theorem 3.2.	11	Min.15
	9	Section 3.1 The fundamental theorem of arithmetic - All topics from Theorem 3.2 onwards.		
	10	Section 3.2 The sieve of Eratosthenes (up to and including theorem 3.4 only)		
III		Module III		

V		Module V (Open Ended)		
	22	Section 7.4 Some properties of the phi-function (Proof of Theorem 7.8 omitted).		
	21 8	Section 7.3 Euler's theorem. (Second proof of Euler's theorem omitted).		
	20	Section 7.2 Euler's phi-function - All Topics from Lemma onwards. (proof of Theorem 7.2 omitted).		
	19	Section 7.2 Euler's phi-function - up to Lemma.	12	Min.15
	18	Section 5.3 Wilson's theorem - All topics from Theorem 5.5 onwards.	12	.
	17	Section 5.3 Wilson's theorem - Up to Theorem 5.5.		
IV		Module IV		
	16 8	Section 5.2 Fermat's little theorem and pseudo primes - All topics from Lemma onwards.		
	15 8	Section 5.2 Fermat's little theorem and pseudo primes - up to Lemma. (omit a different proof for Fermat's theorem)		
	14	Section 4.4 Linear congruences and the Chinese remainder theorem - All Topics from Theorem 4.8 (proof of Theorem 4.8 omitted).	13	Min.15
	Section 4.4 Linear congruences and the Chinese remainder theorem - up to Theorem 4.8.			
Section 4.2 Basic properties of cong from Theorem 4.2 onwards.		Section 4.2 Basic properties of congruence - All topics from Theorem 4.2 onwards.		
	11	Section 4.2 Basic properties of congruence - up to Theorem 4.2.		

Proof of Theorem 4.8. Chinese Remainder Theorem and remaining portions of Section 4.4	12			
remaining portions of Section 4.4 Section 6.1 The sum and the number of divisors Linear congruences and the Chinese remainder theorem. Section 6.3 The Greatest Integer Function - up to Theorem 6.11.				

References

- 1. Rosen, Kenneth H. Elementary number theory. London: Pearson Education, 2011.
- 2. Eynden, Charles Vanden. *Elementary number theory*. Waveland Press, 2006.
- 3. Gehring, F. W., and P. R. Halmos. Graduate Texts in Mathematics, 1976.
- 4. Hsiung, C. Y. Elementary theory of numbers. World Scientific, 1992.
- 5. Hoffman P., *The man who loved only numbers: The story of Paul Erdös and the search for mathematical truth*, Little Brown & Company, 1999.

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	1	0	0	3	0	3	0	3	0	0
CO 2	1	1	0	0	3	0	3	0	3	0	0
CO 3	0	0	1	0	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	✓	✓
CO 2	√	√	√	√	✓
CO 3	√	√	√	√	√

Programme	B.Sc. Mathematics Honours							
Course Code	MAT6CJ306 / MAT8MN306							
Course Title	METHODS O	F DIFFERENTIAL EQUA	ATIONS					
Type of Course	Major							
Semester VI								
Academic	300-399	300-399						
Level								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Foundations of	Foundations of basic calculus (0-99 level)						
Course	The course enhances the skill to solve ordinary differential equation using							
Summary	specific methods analytically and computationally for first and higher order							
	differential equ	ations.						

СО	Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Classify and solve first order differential equation by applying appropriate methods	Ap	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO2	Apply different methods to solve higher order homogeneous and non-homogeneous linear differential equations with constant coefficients	Ap	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam
CO3	Use Laplace transform and inverse Laplace transform to solve linear differential equations	Ap	С	Internal Exam/ Assignment/Seminar/ Viva/End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook		nis G. Zill, A First Course in Differential Equations with M dications 10 th Edn, Cengage Learning (2012) ISBN-13 978-		
Module	Un	Content	Hrs	Marks
	it		(60)	Ext: 70
		First order differential equations		
I		Quick review of Introduction to differential equations		
		(Definitions only)		
	1	2.1.1-Direction Fields		
	2	2.1.2 - Autonomous First-Order DEs	1.4	
	3	2.2 - Separable Equations	14	Min.15
	4	2.3 - Linear Equations		
	5	2.4- Exact Equations		
	6	2.5- Solutions by Substitutions		
	7	Problems from the above sections		
		Higher-Order Differential Equations		
	8	4.1.1 Initial-Value and Boundary-Value Problems		
	9	4.1.2 Homogeneous Equations (proof of Theorems 4.1.2	=	Min.15
II		and 4.1.5 are optional)	12	
11	10	4.1.3 Nonhomogeneous Equations	14	
	11	4.2 Reduction of Order	1	
	12	4.3 Homogeneous Linear Equations with Constant		
	12	Coefficients		
		Higher-Order Differential Equations (Cont)		
13 4.4 - U Appr	4.4 - Undetermined Coefficients—Superposition			
		Approach (up to and including Example 9)		
	14	4.5 - Undetermined Coefficients—Annihilator Approach		
***		(up to and including Example 3)		
III	15	4.5 - Undetermined Coefficients—Annihilator Approach		
		(all the topics after Example 3)	14	Min.20
	16	4.6- Variation of Parameters		
	17	4.7 - Cauchy-Euler Equation (up to and including	1	
		Example 4)		
	18	4.7 - Cauchy-Euler Equation (all the topics after]	
		Example 4)		
	19	4.9 - Solving Systems of Linear DEs by Elimination		
		Laplace Transforms		
	20	7.1 Definition of the Laplace Transforms (proof of	1	
TT 7		Theorems 7.1.2 and 7.1.3 are optional)		3.40
IV		,	8	Min.10
	21	7.2.1 Inverse Transforms	1	
	22	7.2.2 Transforms of Derivatives	1	
		Open Ended: Mastering differential equation using		
T 7	17.75	software	10	
\mathbf{V}		and BVP Problem-solving using mathematical software	12	
		Sage/Python/ Mathematica/Matlab/ Maple/Scilab etc (
	Instr	ructor may choose any software appropriately)		

α	. •
N11	ggestions:
Du.	g g contono.

- Plotting solution curves -2 hrs
- Solve first order initial value problems -2 hrs
- Solve second order initial value problems -2 hrs
- Plot Laplace transform of given function -2 hrs
- find Laplace transform and inverse Laplace transform 2 hrs
- Solve the initial value problem using Laplace transform -2 hrs

References

- 1. G. F. Simmons and S. G. Krantz, Differential Equations: Theory, Technique, and Practice, McGraw Hill (2006), ISBN-13. 978-0072863154
- 2. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India (2009). ISBN: 9788120303614
- 3. E. Boyce, Richard C. Diprima, Douglas B Meade, Elementary Differential Equations and Boundary Value Problems, 11 Edn. William John Wiely & Sons (2017) ISBN: 1119169879
- 4. William F. Trench, Elementary Differential Equations with Boundary Value Problems, S.Chand (G/L) & Company Ltd (2013) ISBN 13: 9780534368418.
- 5. S. L. Ross, Differential Equations, 3rd edition, Wiley India, (2007) ISBN-13. 978-8126515370
- 6. Martha L. Abell, James P. Braselton, Differential Equations with Mathematica, 5th edn. Elsevier Science Publishing Co Inc (2022), ISBN: 9780128241608
- 7. Amit Saha, Doing Math with Python", No Starch Press, US. (2015), ISBN 13 978-1593276409

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

^{*}Optional topics are exempted for end semester examination.

$\label{eq:mapping of COs with PSOs and POs:} \\$

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	3	0	3	0	0
CO 2	2	3	1	2	3	0	3	0	3	0	0
CO 3	2	1	3	3	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	√	✓
CO 2	✓	✓	√	✓	✓
CO 3	√	√	√	√	√

Programme	B.Sc. Mathematics Honours							
Course Code	MAT7CJ401							
Course Title	MATHEMATICAL ANALYSIS							
Type of Course	Major	Major						
Semester VII								
Academic	400-499							
Level								
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	3	2	75				
Pre-requisites 1. l	_	d necessary exposure to	set theory.					
	2. Basic Calculus							
	3. Real Analysis I, Re	eal Analysis II						
Course	The topology of the r	real line is explored in de	etail, as is nece	ssary later for an				
Summary	in-depth understandir	ng of the theory of real	functions. Limi	its, Continuity &				
-	Differentiation are	rigorously covered. Ri	emann-Stieltje	s Integration is				
	introduced as a gener	introduced as a generalisation of the Riemann integration covered in earlier						
	semesters, enabling th	semesters, enabling the student to view summation of series and integration as						
	extensions of the sam	extensions of the same concept. After a discourse on series of functions and						
		various results discussing the compatibility of the above three notions with the						
		on series of functions,						
	U 1	mous Stone-Weierstrass,						

СО	Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse and differentiate between finite, countable, and uncountable sets, and apply these concepts to problems in R	An	C	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO2	Evaluate the properties of compact, perfect, and connected sets in the context of metric spaces.	E	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO3	Synthesize the principles of continuity, differentiability, integrability and convergence of sequences and series including the application of the Mean Value Theorem and L'Hospital's Rule, to solve complex problems involving real-valued and vector-valued functions.	E	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook	Princip	les of Mathematical Analysis, Walter Rudin,, (3/e), Mo	Graw Hill	Inc(2013)
Module	Unit	Content	Hrs (45+30)	External Marks (70)
I		Basic Topology of the Real Line		
	1	Chapter 2 – Finite, Countable & Uncountable Sets – 2.1 to 2.14		
	2	Chapter 2 – Metric Spaces – 2.15 to 2.24	1.0	35. 45
	3	Chapter 2 – Metric Spaces – 2.25 to 2.30	13	Min.15
	4	Chapter 2 – Compact Sets – 2.31 to 2.42		
	5	Chapter 2 – Perfect Sets – 2.43 to 2.44		
	6	Chapter 2 – Connected Sets – 2.45 to 2.47		
II		Continuity and Differentiation	=	
	7	Chapter 4 – Limits of Functions and Continuous Functions – 4.1 to 4.12		
	8	Chapter 4 – Continuity and Compactness – 4.13 to 4.21		
	9	Chapter 4 - Continuity and Connectedness – 4.22 to 4.24		
	10	Chapter 4 – Discontinuities and Monotonic Functions – 4.25 to 4.30	16	Min.20
	11	Chapter 5 – The Derivative – 5.1 to 5.6	=	
	12	Chapter 5 – Mean Value Theorems – 5.7 to 5.12		
	13	Chapter 5 – L'Hospital's rule, Higher Derivatives & Taylor's Theorem, Differentiation of Vector Valued Functions – 5.13 to 5.19 (proof of theorem 5.13 and theorem 5.15 are optional)		
III		The Riemann-Stieltjes Integral		
	14	Chapter 6 – Definition and Existence – 6.1 to 6.6		
	15	Chapter 6 – Definition and Existence – 6.6 to 6.11	=	
	16	Chapter 6 – Properties – 6.12 to 6.13		
	17	Chapter 6 – Properties – 6.14 to 6.19 (proof of theorem 6.19 is optional)	9	Min.15
	18	Chapter 6 – Integration & Differentiation – 6.20 to 6.22		
IV		Sequences & Series of functions		
	19	Chapter 7 – Discussion of Main Problem - 7.1 to 7.3		
	20	Chapter 7 – Discussion of Main Problem - 7.4 to 7.6	7	Min.10
	21	Chapter 7 – Uniform Convergence – 7.7-7.10	1	
	22	Chapter 7 – Uniform Convergence & Continuity – 7.11 to 7.13		
V		Practicum:	30	-
	_	al is for the students to learn the following selected via self-study and group activities. The lecturer may		

assist by	y running and overseeing group discussions and class	
seminai	s and referring library books for self-study and note	
prepara	tion.	
1	Chapter 3 – Convergent Sequences, Subsequences	
2	Chapter 3 – Cauchy Sequences, Upper and Lower	
	Limits	
3	Chapter 3 – Some Special Sequences, Series	
4	Chapter 3 – Series of Non-Negative Terms, The	
	Root and Ratio Tests	
5	Chapter 3 – Power Series, Absolute Convergence	
6	Chapter 3 – Addition and Multiplication of Series,	
	Rearrangements.	
7	Chapter 4 – Infinite Limits & Limits at Infinity –	
	4.32 to 4.34	
8	Chapter 6 – Integration of Vector-valued Functions	
	and Rectifiable curves - 6.23 to 6.27	
9	Chapter 7 – Uniform Convergence, Integration and	
	Differentiation – 7.16 to 7.18	
10	Chapter 7 – Equicontinuity and Stone-Weierstrass	
	Theorem – 7.19 to 7.27	

References

- 1. Mathematical Analysis, T. M. Apostol, (2nd Edn.); Narosa; 2002.
- 2. Introduction to Real Analysis, R. G. Bartle and D.R. Sherbert:; John Wiley Bros; 1982.
- 3. Real Analysis- a first course, R. A. Gordon:(2nd Edn.); Pearson; 2009.
- 4. Analysis-I, H. Amann and J. Escher, Birkhuser, 2006
- 5. The way of Analysis, Robert Strichartz, (R/e), Jones and Bartlett Mathematics (2000)
- 6. A first course in Real Analysis, M. H. Protter and C. B. Moray, Springer Verlag UTM (1977)

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

^{*}Optional topics are exempted for end semester examination

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	0	3	0	3	0	3	0	0
CO 2	2	3	2	0	3	0	3	0	3	0	0
CO 3	3	3	3	1	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	√	✓	√	>	✓
CO 2	✓	✓	√	✓	~
CO 3	√	√	√	√	✓

Programme	B.Sc. Mathematics Honours						
Course Code	MAT7CJ402						
Course Title	GENERAL TOPOLOGY						
Type of Course	Major						
Semester VII							
Academic	400-499						
Level							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4 3 2 75						
Pre-requisites	1. Mathematical Logi	ic and necessary exposure	to set theory.				
	2. Basic Calculus						
	3. Real Analysis I, Re	eal Analysis II					
Course	5	al topology is introduced v		•			
Summary		of metric spaces. Basic co					
		boundaries, neighbourho					
		discussion of continuity a					
	1 1	g and weak topologies		*			
		connectedness, and various countability axioms are studied in some detail. After					
	_	a detailed study of the hierarchy of separation axioms and their interplay with					
	* *	as compactness, the cour		-			
	of the famous Urysol	nn & Tietze characterisation	ons of normali	ity.			

CO	Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Define and classify topological spaces, bases, and subspaces, and apply these concepts to identify examples of different topological structures.	Ap	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO2	Analyse and evaluate closed sets, interior points, and accumulation points within topological spaces, and understand the concepts of continuity and related topological properties.	An	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO3	Synthesize the concepts of connectedness, separation axioms, and compactness to determine specific topological properties of spaces and analyse their applications in solving problems related to paths and separation.	E	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook	Introdu 1983.	action to General Topology, K. D. Joshi,, New Age Int	ternational	Publishers,
Module	Unit	Content	Hrs (45+30)	External Marks (70)
I		Topological Spaces		
	1	Chapter 4 – Section 1: Definition of Topological Space		
	2	Chapter 4 – Section 2: Examples of Topological Spaces		
	3	Chapter 4 – Section 3: Bases and Sub-bases – 3.1 to 3.7	12	Min.15
	4	Chapter 4 – Section 3: Bases and Sub-bases – 3.8 to 3.10		
	5	Chapter 4 – Section 4: Subspaces – 4.1 to 4.6		
II		Basic concepts		
	6	Chapter 5 – Section 1: Closed Sets and Closure (Proof of Theorem 1.5 is optional)		
	7	Chapter 5 – Section 2: Neighbourhoods, Interior and Accumulation Points – 2.1 to 2.8		
	8	Chapter 5 – Section 2: Neighbourhoods, Interior and Accumulation Points –2.9 to 2.10 and 2.13	10	Min.15
	9	Chapter 5 – Section 3: Continuity and Related Concepts – 3.1 to 3.6		
	10	Chapter 5 – Section 3: Continuity and Related Concepts – 3.7 to 3.11		
III		Spaces with special properties		
	11	Chapter 5 – Section 4: Making Functions Continuous, Quotient Spaces – 4.1 to 4.7		
	12	Chapter 5 – Making Functions Continuous, Quotient Spaces – 4.8 to 4.12		
	13	Chapter 6 – Section 1: Smallness Conditions on a Space – 1.1 to 1.9	12	Min.15
	14	Chapter 6 – Section 1: Smallness Conditions on a Space – 1.10 to 1.18		
	15	Chapter 6 – Section 2: Connectedness – 2.1 to 2.6 (Proof of Theorem 2.5 is optional)		
	16	Chapter 6 – Connectedness – 2.7 to 2.15		
IV		Separation axioms		
	17	Chapter 6 – Section 3: Local Connectedness and Paths – 3.1 to 3.8		
	18	Chapter 7 – Hierarchy of Separation Axioms - 1.1 to 1.6.		
	19	Chapter 7 – Hierarchy of Separation Axioms - 1.7 to 1.12	11	Min.15
	20	Chapter 7 – Hierarchy of Separation Axioms - 1.13 to 1.17		

	21 Chapter 7 – Section 2: Compactness and		
	Separation Axioms - 2.1 to 2.6		
	22 Chapter 7 – Section 2: Compactness and Separation		
	Axioms- 2.7 to 2.10		
${f V}$	Practicum:		-
Practicum	The goal is for the students to learn the following selected		
	topics in 10 practicum sessions of hours each via self-study		
	and group activities. The lecturer may assist by running group		
	discussions, supervising class seminars and referring library		
	books for self-study and note preparation.		
1	Chapter 1 - Logical Warm-up		
2	Chapter 2 – Preliminaries		
3	Chapter 3 – Motivation for Topology		
4	Chapter 6 - Connectedness: Theorem 2.5 and its proof		
5	Chapter 6 - Local connectedness and Paths - 3.9 to 3.11		
6	Chapter 7 - Compactness and Separation Axioms - 2.11 to	30	
	2.16		
7	Chapter 7 – Section 3: Urysohn Characterisation of		
	Normality -3.1 to 3.4		
8	Chapter 7 – Section 3: Urysohn Characterisation of		
	Normality - 3.5 to 3.6		
9	Chapter 7 – Section 4: Tietze Characterisation of Normality -		
	4.1 to 4.5		
10	Chapter 7 – Section 4: Tietze Characterisation of Normality -		
	4.6 to 4.8		

- 1. Topology, J. R. Munkres, Prentice Hall of India, 2000.
- 2. General Topology, S. Willard, Addison Wesley Pub. Company, 1976.
- 3. General Topology, J. L. Kelley, D. van Nostrand, 1955.
- 4. Introduction to Topology and Modern Analysis, G. F. Simmons, McGraw-Hill, 1963.
- 5. Topology, James Dugundji, Prentice Hall of India, 1975.

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

^{*}Optional topics are exempted for end semester examination.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	0	3	0	3	0	3	0	0
CO 2	3	2	2	1	3	0	3	0	3	0	0
CO 3	3	3	3	2	3	0	3	0	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	√	>	>	>	√
CO 2	√	✓	√	\	√
CO 3	√	√	√	√	√

Programme	B. Sc. Mathematics H	Ionours		
Course Code	MAT7CJ403			
Course Title	ABSTRACT ALGE	BRA II		
Type of Course	Major			
Semester	VII			
Academic	400-499			
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours
		per week	per week	
	4	3	2	75
Pre-requisites	Mathematical Logi First Course on Gro	c and necessary exposure	to set theory.	
Course Summary	introductory courses. In products and quotient gonerated Abelian Grexplored in order to congroups. After an introductions are introductions are introductions are introductions.	heory is taken upon from varieties taken upon from varieties are introduced. The Foups is introduced (without appare the challenges in the tructory delving into normal roduced and Sylow Theory groups. The course conclusion factorisation, paving the vanced courses.	group theory fundamental That proof) and theory of Abelia and subnormal y discussed in udes with a bar	- those of direct eorem of Finitely he consequences in vs non-Abelian series of groups, in the context of sic discussion on

Course Outcomes (CO):

CO	Satement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply the concept of direct products of groups and factor groups to construct new groups from existing ones.	Ap	P	Internal Exam/Assignment/Se minar/ Viva/Report/ End Sem Exam
CO2	Analyse and evaluate the isomorphism theorems, series of groups, and Sylow theorems to understand the structural properties and classifications of groups.	E	С	Internal Exam/Assignment/Se minar/ Viva/Report/ End Sem Exam
CO3	Synthesize the concepts of rings of polynomials, factorization of polynomials, and ideal structures within rings and fields, with a focus on homomorphisms and factor rings.	E	Р	Internal Exam/Assignment/Se minar/ Viva/Report/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

[#] - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook		t Course in Abstract Algebra, J. B. Fraleigh, 7 th Editied, 2014.	on, Pearson	Education
Module	Unit	Content	Hrs (45+30)	External Marks (70)
I	В	Basic Constructions – New Groups From Old		
	1	Section 11 – Direct Products of Groups (11.1 to 11.11)		
	2	Section 11 – Finitely Generated Abelian Groups (11.12 to 11.17)	11	N/2 15
	4	Section 14 – Factor Groups	11	Min.15
	5	Section 15 – Factor Group Computations (15.1 to 15.13)		
	6	Section 15 – Simple Groups, The Centre and Commutator Subgroups (15.14 to 15.21).		
II		Advanced Group Theory		
	(1	Pre-requisites: Sections 16 and 17 of Practicum)		
	7	Section 34 – Isomorphism Theorems	-	
	8	Section 35 – Series of Groups - 35.1 to 35.19 (Proofs of Zassenhaus Lemma and Schreier Theorem are optional)		
	9	Section 36 – Sylow Theorems (36.1 to 36.4)	14	Min.20
	10	Section 36 – Sylow Theorems (36.5 to 36.13).	-	
	11	Section 37 – Applications of the Sylow Theory	-	
		(37.1 to 37.6)		
	12	Section 37 – Further Applications (37.7 to 37.15)	-	
III		Rings and Fields		
	13	Section 22 – Rings of Polynomials – (22.1 to 22.3) (proof of Theorem 22.2 is optional)	11	Min.15
	14	Section 22 – The Evaluation Homomorphisms (22.4 to 22.11)		
	15	Section 23 – Factorisation of Polynomials over a Field (23.1 to 23.6)		

	16	Section 23 – Irreducible Polynomials (23.7 to 23.21)		
	17	Section 24 – Non-commutative Examples. (24.1 to 24.3)		
	18	Section 24 – Non-commutative Examples		
		(24.4 to 24.10)		
IV		More Ring Theory		
	19	Section 26 – Homomorphism and Factor Rings		
		(26.1 to 26.6).		
	20	Section 26 – Factor Rings (26.7 to 26.19)	8	Min.10
	21	Section 27 – Prime and Maximal Ideals		
		(27.1 to 27.20).		
	22	Section 27 – Ideal Structure in F[x] (27.21 to 27.27)		
V		Practicum:		-
	topics study runnii	oal is for the students to learn the following selected s in 5 practicum sessions of six hours each via self- and group activities. The lecturer may assist by ng group discussions, supervising class seminars and ing library books for self-study and note preparation.		
1		n 12 – Plane isometries		
2	Section	n 16 – Group Action on a Set	30	
3	Section	n 17 – Application of G-sets to Counting		
4	Section	n 21 – The Field of Quotients of an Integral Domain		
		n 35 - Series of Groups - Ascending central series - to 35.21		
5	Section	n 39 – Free Groups		
<u> </u>			I	

- 1. Abstract Algebra, Dummitt and Foote, Wiley India, 2011.
- 2. Contemporary Abstract Algebra, Joseph A. Gallian, CRC Press, 1986.
- 3. Topics in Algebra, I. N. Herstein, John Wiley and Sons, 2006.
- 4. Algebra, T. W. Hungerford, Springer-Verlag, 1987.
- 5. Algebra, Micheal Artin, Birkhauser, 2011
- 6. Algebra, Serge Lang, Springer, 2002.
- 7. Advanced Higher Algebra, J G Chakravorthy and P R Gosh, Kolkata U N Dhur, 2014 (ISBN: 9789380673059)

Suggested Programming Exercises for Practicum:

1. Form congruence groups Z 3, Z2. Verify that $Z_3 \times Z_2 \cong Z_6$. Form its

- cosets (Section 9.11, Ref (3)).
- 2. Find the centre of the dihedral group. (Section 9.12, Ref (3))
- 3. For an element from the dihedral group, find its stabilizer. (Section 9.12, Ref (3))
- 4. Find the conjugacy classes of an element from the dihedral group. (Section 9.12, Ref (3))
- 5. Take a subgroup (say H) of S_3 . List the conjugacy classes using the command conjugacy classes subgroups (). Can you find out all the subgroups using these conjugacy classes? (Ref (1) or Section 9.12, Ref (3))
- 6. Find Sylow-2-subgroups and Sylow-3-subgroups or D ₁₈ (Section 9.13, Ref (3))

- 1. Robert A. Beezer; Group Theory and SAGE: A Primer, http://people.reed.edu/~davidp/332/sage-group-theory.pdf
- 2. Group Theory and Sage SageMath tutorial https://doc.sagemath.org/html/en/thematic_tutorials/group_theory.html
- 3. Ajit Kumar, Vikas Bist; Group Theory An Expedition with SageMath, Narosa Publishing House.
- 4. Thomas W. Judson, Robert A. Beezer; Abstract Algebra Theory and Applications with Sage Exercises for Abstract Algebra, http://abstract.ups.edu/download/ aata-20130816.pdf

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

^{*}Optional topics are exempted for end semester examination.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
GO 1	2	2	2	1	2	0	2	0	2	0	1
CO 1	3	2	2	l	3	0	3	0	2	0	1
CO 2	2	3	1	2	3	0	3	0	3	0	2
CO 3	2	1	3	3	3	0	3	0	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	√	✓	√	>	√
CO 2	✓	✓	√	\	✓
CO 3	√	√	√	√	✓

Programme	B.Sc. Mathematics	B.Sc. Mathematics Honours					
Course Code	MAT7CJ404						
Course Title	LINEAR ALGEB	RA					
Type of Course	Major						
Semester VII							
Academic Level	400-499						
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	1. Mathematical Lo	ogic and necessary exposu	re to set theor	y.			
	2. Matrices and De	terminants					
	3. Systems of Linea	ar Equations and their solu	ıtions				
Course	Vector spaces in t	the abstract are introduce	ed. Linear tra	insformations are			
Summary	introduced as struc	cture preserving maps bet	tween them. I	Representation of			
	linear transformati	ons as matrices is discu	ssed. The alg	gebraic dual and			
	doubledual space of	of a vector space are studi	ed in some de	etail. The concept			
	-	f a linear transformation					
	well. The course t	hen passes on to spectra	l theory on fi	inite dimensional			
	spaces, introducing	g characteristic values ar	nd vectors. A	fter an extended			
	discussion leading	g up to the characteris	sation of dia	agonalisable and			
	triangulable operate	ors,					
	_	omposition of a linear ope					
	ends with a short di	iscussion of inner product	s and inner pro	oduct spaces.			

Course Outcomes (CO):

CO	Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse and apply the concepts of vector spaces, subspaces, and bases to solve problems involving linear independence and dimensionality.	An	Р	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO2	Evaluate the properties of linear transformations and their algebraic representations using matrices.	E	С	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam
CO3	Synthesize the concepts of linear functionals, the double dual space, and the transpose of linear transformations to understand advanced topics in linear algebra and apply them to canonical forms	E	P	Internal Exam/Assignment/Sem inar/ Viva/Report/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	India, Unit	Hrs (45+30)	External Marks (70)	
I		Vector Spaces		ì
	1	Section 2.1 – Vector Spaces		
	2	Section 2.2 – Subspaces		
	3	Section 2.3 – Bases and Dimension – up to		Min.15
		Theorem 5		
	4	Section 2.3 – Bases and Dimension – rest of the	12	
		section starting from Theorem 5		
	5	Section 2.4 – Coordinates – up to and including		
		Theorem 7		
	6	Section 2.4 – Coordinates – rest of the section		
II		Linear Transformations		
	7	Section 3.1 – Linear Transformations – upto and		
		including Example 7		
	8	Section 3.1 – Linear Transformations – rest of the		Min.1
		section.		
	9	Section 3.2 – The Algebra of Linear	11	
		Transformations – up to and including Theorem 5		
	10	Section 3.2 – The Algebra of Linear		
		Transformations – rest of the section		
	11	Section 3.3 – Isomorphism		
	12	Section 3.4 – Representation of Transformations		
		by Matrices – up to and including Example 15		
III		Linear Transformations		
	13	Section 3.4 – Representation of Transformations		
		by Matrices – rest of the section		
	14	Section 3.5 – Linear Functionals – upto and		
		including Example 22.		Min.1
	15	Section 3.5 – Linear Functionals – rest of the		
		section.	11	
	16	Section 3.6 – The Double Dual – upto and	11	
		including Theorem 18.		
	17	Section 3.6 – The Double Dual – the rest of the		
	10	section	_	
	18	Section 3.7 – The Transpose of a Linear		
	10	Transformation – up to and including Theorem 22	4	
	19	Section 3.7 – The Transpose of a Linear		
TX7		Transformation – rest of the section.		-
IV	20	Elementary Canonical Forms	-	
	20	Section 6.1 and 6.2 – Introduction and		N/12 1
	21	Characteristic Values	11	Min.1
	21	Section 6.3 – Annihilating Polynomials	11	
		(Proof ofTheorem 4 omitted)	_	
	22	Section 6.4 – Invariant Subspaces.		

${f V}$		Practicum						
	The go	al is for the students to learn the following selected						
	topics	in 10 practicum sessions of three hours each via						
		tudy and group activities. The lecturer may assist by						
		ng group discussions, supervising class seminars and						
		ing library books for self-study and						
	note p	preparations.						
	1	Section 1.3 – Matrices and Elementary Row	30					
		Operations						
	2	Section 1.4 – Row Reduced Echelon Matrices						
	3	Section 1.5 – Matrix Multiplication						
	4	Section 1.6 – Invertible Matrices						
	5	Section 6.4 – Triangulation and Diagonalisation						
	6	Section 6.6 – Direct-sum Decompositions						
	7	Section 6.7 – Invariant Direct Sums						
	8	Section 8.1 – Inner Products						
	9	Section 8.2 – Inner Product Spaces						
	10	Section 6.8 – The Primary Decomposition						
		Theorem						

- 1. Finite Dimensional Vector Spaces, P. R. Halmos, Narosa Pub House, 1980..
- 2. Linear Algebra, S. Lang, Addison Wesley Pub Company, 1972.
- 3. Topics in Algebra, I. N. Herstein, John Wiley & Sons, 2006.
- 4. Linear A lgebra, R. R. Stoll & E. T. Wong, Academic Press International Edition, 1968.

Suggested Programming Exercises for Practicuum:

- 1. Form a four-dimensional vector space over Q. Take two vectors from this, find its span. (Chapter VS, Ref (1))
- 2. Find basis of the vector subspace found in the above question. (Chapter VS, Ref (1))
- 3. Take some elements from this vector space, test for linear independence. (Chapter V Section LI, Ref (1))
- 4. Form two vector spaces over Q. Define symbolic linear transformations between them, find the image of selected elements under it. (Chapter LT, Ref (1))
- 5. Define linear transformations (LT) from matrices. (Chapter LT, Ref (1))
- 6. Check if linear transformation is injective (Section ILT, Ref (1))
- 7. Define two LT, add them. Find the individual matrices of these with respect to certain bases. Verify that the matrix of the sum of LT is the sum of matrices of individual LT .(Section OLT, , Ref (1)))
- 8. Find the kernel of an LT, find its nullitty. (Section ILT, Ref (1))
- 9. Find inverse of LT (Section IVLT, Ref (1))
- 10. Take a matrix, find Eigenvalues, Eigen vectors, check if it is

diagonalizable, diagonalize if it is. (Chapter E ILT, Ref (1))

References

- 1. Robert A. Beezer, Sage for Linear Algebra A Supplement to A First Course in Linear Algebra http://linear.ups.edu/sage-fcla.html
- 2. Sang-Gu Lee *et al.*, Linear Algebra with Sage https://www.researchgate.net/publication/280093747_Linear_Algebra_with_Sage_BigBook_Free_e-book_English_ Version_All

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	0	3	1	3	0	2
CO 2	3	3	2	1	3	0	3	2	3	0	2
CO 3	3	3	2	2	3	0	3	2	3	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	√	~	>	>	√
CO 2	✓	√	√	√	✓
CO 3	√	√	√	√	√

Programme	B.Sc. Mathematics Honours								
Course Code	MAT7CJ405								
Course Title	DISCRETE MATH	DISCRETE MATHEMATICS							
Type of Course	Major								
Semester VII									
Academic	400-499								
Level									
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours					
		per week	per week						
	4	3	2	75					
Pre-requisites	Basic Logical thinking	g and Set theory.							
Course	The "Discrete Mather	matics" course (MAT7CJ4	405) covers es	ssential concepts in					
Summary	discrete structures ar	nd their applications. Stu	dents explore	topics like graph					
	theory, automorphism	ns, connectivity, and or	der relations	through carefully					
	structured modules.	The course includes pract	tical exercises	and references to					
	foundational works	foundational works in the field, providing students with theoretical							
		oblem-solving skills nece		her studies or real-					
	world applications in	mathematics and related a	areas.						

Course Outcomes (CO):

СО	Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe and explain fundamental concepts in graph theory, including subgraphs, vertex degrees, paths, connectedness, and operations on graphs.	U	С	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam
CO2	Apply and analyse concepts related to automorphisms of graphs, vertex and edge cuts, and graph connectivity, utilizing definitions, theorems, and exercises.	An	P	Internal Exam/ Assignment/ Seminar/ Viva/ Report/ End Sem Exam
CO3	Evaluate and compare order relations in mathematical contexts and their implications for understanding and applying order theory.	E	С	Internal Exam/ Assignment/ Seminar/ Viva/ Report/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook	 A Textbook of Graph Theory. (2/e) Balakrishnan, R, & Ranganathan, K, Springer-Verlag, New York Inc., 2020 Foundations of Discrete Mathematics, K. D Joshi, New Age International (P) Limited, New Delhi, 1989. An Introduction to Formal Languages and Automata (2/e), Peter Linz, Narosa Publishing House, New Delhi, 1997 									
Module	Unit	Content	Hrs (75)	External Marks (70)						
		Fundamentals of Graph Theory								
	1	Section 1.0 Introduction (Text 1)								
т	2	Section 1.1 Basic Concepts (Text 1)								
Ι	3	Section 1.2 Sub Graphs (Text 1)	12	Min.15						
	4	Section 1.3 Degrees of Vertices (Text 1)								
	5	Section 1.4 Paths and Connectedness (Text 1)								
		Graph Operations and Connectivity								
	6	Section 1.5 Automorphisms of a simple graph (Definition 1.5.1 to Theorem 1.5.3) (Text 1)								
	7	Section 1.5 Automorphisms of a simple (Exercise 5.1 to Exercise 5.5) (Text 1)								
	8	Section 1.7 Operations on Graphs (Definition 1.7.1 to								
II	9	11	Min.15							
	10	Exercise 7.6) (Text 1) Section 3.1 Vertex Cuts and edge Cuts (Definition 3.1.1 to Theorem 3.1.10) (Text 1)								
	11	Section 3.1 Vertex Cuts and edge Cuts (Proposition 3.1.2								
	12	Section 3.2 Connectivity and Edge - Connectivity (Definition 3.2.1 to Exercise 2.10) (Text 1)								
	13	Section 3.2 Connectivity and Edge - Connectivity (Theorem 3.2.10 to Theorem 3.2.11) (Text 1)								
		Order Relations								
	14	Section 3 Order Relations (Sections 3, 3.1, 3.2 of Text 2)								
	15	Section 3 Order Relations (Sections 3.3, 3.4 of Text book 2)		Min.15						
Ш	16	Section 3 Order Relations (Sections 3.5, 3.6 of Text book 2)	11							
	17	Section 3 Order Relations (Sections 3.7 of Text book 2) Section 3 Order Relations (Sections 3.8, 3.9, 3.10 of Text								
	18									
	19	Section 3 Order Relations (Sections 3.11 of Text book 2)								
		Finite Automata and Acceptors								
	20	1 \								
IV	21	Section 2.2 Non-Deterministic Finite Accepters (Text 3)	11	Min.15						
	22	Section 2.3 Equivalence of Deterministic and Nondeterministic Finite Accepters (Text 3)								

	Practicum	30				
	Line Graphs and Directed Graphs					
\mathbf{V}	Eulerian Graphs and Hamiltonian Graphs					
	Planar and Non planar Graphs					
	Applications of Lattices in Switching Circuits					
	Applications of Automata in Theory of Computing					

- 1. J. C. Abbot: Sets, lattices and Boolean Algebras; Allyn and Bacon, Boston; 1969.
- 2. J. A. Bondy, U.S.R. Murty: Graph Theory; Springer; 2000.
- 3. S. M. Cioaba and M.R. Murty: A First Course in Graph Theory and Combinatorics; Hindustan Book Agency; 2009
- 4. R. P. Grimaldi: Discrete and Combinatorial Mathematics- an applied introduction(5th edn.); Pearson; 2007.
- 5. J. L. Gross: Graph theory and its applications(2nd edn.); Chapman & Hall/CRC; 2005
- 6. Graph Theory and Decomposition, Jomon Kottarathil, Sudev Naduvath and Joseph Varghese Kureethara, CRC Press, London, New York, 2024.

^{**70} external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

MaCopping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	2	2	0	3	0	2	1	3	0	2
CO 2	1	3	2	1	3	0	3	2	3	0	3
CO 3	0	2	2	1	3	0	3	1	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	√	√	>	>	√
CO 2	✓	√	√	√	√
CO 3	√	√	√	√	√

Programme	B.Sc. Mathemat	B.Sc. Mathematics Honours					
Course Code	MAT8CJ406 / I	MAT8CJ406 / MAT8MN406					
Course Title	BASIC MEAS	URE THEORY					
Type of Course	Major						
Semester VIII							
Academic	400-499						
Level							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	1. Fundamental	Mathematics Concepts: Set	, Functions, Lo	gic			
	2. Real Analysis						
Course	This course fam	niliarises students with the I	Lebesgue Meast	re on the real line			
Summary	and how it enables the construction of a theory of integration that does away						
	with many of th	ne drawbacks of Riemann ir	itegration.				

Course Outcomes (CO):

CO	CO Statement Cognitive		Knowledge	Evaluation Tools				
		Level*	Category#	used				
CO1	Understand and explain the concepts of Lebesgue measure, including outer measure, measurable sets, and properties such as countable additivity and the Borel-Cantelli Lemma.	U	С	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam				
CO2	Apply theorems related to Lebesgue measurable functions, including Littlewood's Three Principles, Egoroff's, and Lusin's Theorems, to analyse function behaviour and approximations.	Ap	P	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam				
CO3	Evaluate and integrate functions using the Lebesgue integral, understanding its differences from the Riemann integral and applying it to bounded and non-negative measurable functions.	Е	F	Internal Exam/ Assignment/ Seminar/ Viva /Report/ End Sem Exam				
	* - Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create(C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)							

Text book	Real A	nalysis, H. L. Royden & P. M. Fitzpatrick, 4 th Edition, Prentice Hall	of India	a, 2000
Modul e	Unit	Content	Hrs (45+ 30)	Ext. Marks (70)
I		Chapters 0, 1, 2: The Lebesgue Measure	30)	(70)
_	1	Preliminaries On Sets, Mappings & Relations (Review only)	-	
	2	Chapter 1: The Real Numbers: Sets, Sequences & Functions (Proofs of results included in Practicum)		
	3	2.1 Introduction – Measure as a set function	1	Min.15
	4	2.2 Lebesgue Outer Measure	15	
	5 2.3	The σ - Algebra of Lebesgue Measurable Sets		
	6	2.4 Outer & Inner Approximation of Lebesgue Measurable Sets		
	7	2.5 Countable Additivity, Continuity & the Borel-Cantelli Lemma		
	8	2.6 Non-Measurable Sets		
II		Chapter 3: Lebesgue Measurable Functions		
	10	3.1 Sums, Products & Compositions	8	Min.15
	11	3.2 Sequential Pointwise Limits & Simple Approximation	-	
	12 3.	Littlewood's Three Princ iples, Egoroff's & Lusin's Theorems		
III	10	Chapter 4: The Lebesgue Integral		
	13	4.1 The Riemann Integral		
	14	4.2 Lebesgue Integral of Bounded Measurable Function Over a Set of Finite Measure.		
	15	4.3 Lebesgue Integral of a Non-negative Measurable Function.		Min.20
	16	4.4 The General Lebesgue Integral	12	
	17	4.5 Countable Additivity & Continuity of Integration (proofs included in practicum)		
	18	4.6 Uniform Integrability: The Vitali Convergence Theorem (proofs included in Practicum)		
IV		Chapter 5: Differentiation & Lebesgue Integration		
	19	6.1 Continuity of Monotone Functions.	1	
	20	6.2 Differentiability of Monotone Functions: Lebesgue's Theorem	10	Min.10
	21 6.	Functions of Bounded Variation: Jordan's Theorem		
	22	6.4 Absolutely Continuous Functions (Proof of Theorem 9 is optional)		
	23	6.5 Integrating Derivatives: Differentiating Indefinite Integrals		
V		Practicum:	30	
	practic The lea	al is for the students to learn the following selected topics in 10 um sessions of three hours each via self-study and group activities. cturer may assist by running group discussions and supervising		
		eminars and referring library books for self-study and		
		Proofs in Chapter 1: The Real Numbers	-	
	$\frac{1}{2}$	Proofs in Chapter 1: The Real Numbers Section 2.7 The Capter Set & the Capter Lebesgue Function	-	
	3	Section 2.7 - The Cantor Set & the Cantor-Lebesgue Function Proofs in Section 4.5	-	
	3	1 10013 III 3CCII0II 4.J		

4	Proofs in Section 4.6	
5	5.1: Uniform Integrability & Tightness	
6	5.2: Convergence in Measure	
7	5.3: Characterizations of Riemann & Lebesgue Integrability	
8	7.1: Normed Linear Spaces	
9	7.2: Inequalities	
10	7.3: Riesz-Fischer Theorem	

- 1. R. G. Bartle, Wiley, The Elements of Integration & Lebesgue Measure, 1995...
- 2. G. de Barra, Measure Theory & Integration, New Age International Publications, 1981.
- 3. David M. Bressoud, A Radical Approach to Lebesgue's Theory of Integration (ARALTI), Cambridge University Press, 2008.
- 4. P. R. Halmos, Measure Theory, GTM, Springer-Verlag
- 5. Walter Rudin, Principles of Mathematical Analysis, 3 rd Edition, Tata McGraw Hill Inc., 1976.
- 6. Walter Rudin, Real & Complex Analysis, 3 rd Edition, McGraw Hill Inc., 1987.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	0	0	3	0	2	1	3	0	2
CO 2	2	2	0	0	3	0	3	2	3	0	3
CO 3	1	0	3	0	3	0	3	1	3	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Report
- Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment/ Report	Seminar	Viva	End Semester Examinations
CO 1	√	√	>	>	√
CO 2	✓	√	√	✓	~
CO 3	√	√	√	√	✓

^{*}Optional topics are exempted for end semester examination.

^{**70} external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Programme	B.Sc. Mathematics Honours				
Course Code	MAT8CJ407 / MAT8MN407				
Course Title	NUMBER THI	EORY			
Type of Course	Major				
Semester VIII					
Academic Level	400-499				
Course Details	Credit	Lecture/Tutorial per week	Practicum per week	Total Hours	
	4	4	-	60	
Pre-requisites	Basic algebra of	integers, basic set theory, b	asic proof tech	niques.	
Course		advanced course than MAT6			
Summary	-	y. Here we focus on arithme		_	
		orime numbers, quadratic re			
		graphy. Arithmetical function			
	1	and their distribution. We p			
		such as Mobius function, E		*	
	-	nrough techniques such as D			
		ext we study their asymptoti			
	•	mates, partial summation an	-		
	the distribution of prime numbers. The prime number theorem is stated along				
	with some equivalent versions and a build-up to it. Next the concept of quadratic residues, quadratic reciprocity and how to compute the same, along with				
	applications, ar	e studied. The open-ended p	art is Cryptogra	арпу.	

Course Outcomes (CO):

CO	Statement Cognitive		Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand and analyse the properties of arithmetical functions, including the Möbius function, Euler totient function, and their relationships and products.	An	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Apply Dirichlet multiplication and inversion formulas to solve problems involving arithmetical functions, including the Mangoldt function and Liouville's function.	Ap	Р	Internal Exam/Assignment /Seminar/ Viva/ End Sem Exam
CO3	Evaluate and create asymptotic formulas and theorems related to the distribution of prime numbers and quadratic residues, utilizing tools such as Chebyshev's functions and the quadratic reciprocity law.	С	F	Internal Exam/Assignment /Seminar/ Viva/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook	1.	Introduction to Analytic Number Theory, Tom M. Ap International Student Edition, Narosa Publishing House		_		
		1990	e, New Deli	11,		
	2. A	A course in Number Theory and Cryptography, second	d Edition,N	Neal		
		KoblitzSpringer, 1991	,			
Module	Unit			Marks		
			(48+	Ext: 70		
			12)			
		Arithmetical Functions and their				
		properties				
		Arithmetical Functions and Dirichlet				
	1	Multiplication				
	1	Section 2.1-Introduction				
	2	Section 2.2- The Mobius function $\mu(n)$				
	3	Section 2.3- The Euler totient function $\phi(n)$				
I	4	Section 2.4- A relation connecting μ and φ				
	5	Section 2.5- A product formula for $\phi(n)$				
	6	Section 2.6- The Dirichlet product of arithmetical				
		functions				
	7	Section 2.7- Dirichlet inverses and Mobius	18	Min.15		
		inversionformula				
	8	Section 2.8 The Mangoldt function Λ(n)				
	9	Section 2.9- Multiplicative functions				
	10	Section 2.10- Multiplicative functions and				
		Dirichlet				
	1.1	Multiplication				
	11	Section 2.11- Inverse of a completely				
		multiplicative function				
	12	Section 2.12- Liouville's function λ(n)				
	13	Section 2.12- Elouvine's function $\chi(n)$ Section 2.13- The divisor functions $\sigma_{\alpha}(n)$				
	14	Section 2.14- Generalized Convolutions				
	14	Averages of Arithmetical Functions				
	15	Section 3.1- Introduction				
	16	Section 3.2The big oh notation. Asymptotic				
II	10	equality of functions				
**	17	Section 3.3- Euler's Summation formula				
	18	Section 3.4- Some elementary asymptotic	10	Min.15		
	10	formulas				
	19	Section 3.10- The Partial sums of a Dirichlet				
	20	product Section 3.11 -Applications of $\mu(n)$ and $\Lambda(n)$				
	21	Section 3.11 - Applications of $\mu(n)$ and $\lambda(n)$	-			
	21	of aDirichlet product				
	Some	Elementary Theorems on the Distribution of				
	Some	PrimeNumbers				

	22	Section 4.1- Introduction		
	23	Section 4.2- Chebyshev's functions $\psi(x)$ and $\vartheta(x)$		
III	Section 4.3- Relations connecting $\vartheta(x)$ and $\pi(x)$		10	Min.15
111	25	Section 4.4- Some equivalent forms of the	10	141111.13
		primenumber theorem		
	26	Section 4.5- Inequalities for $\pi(n)$ and p_n		
137	Quad	Iratic Residues and the Quadratic Reciprocity	10	Min.15
IV	Law		10	MIII.15
	27	Section 9.1- Quadratic residues		

	28	Section 9.2- Legendre's symbol and its properties		
	29			
	30	Section 9.4- Gauss' lemma		
	31	Section 9.5- The quadratic reciprocity law		
	32	Section 9.6- Applications of the reciprocity law		
		Open Ended: Cryptography		
	Chapter III			
	• 1	: Some simple cryptosystems -3 hrs		
\mathbf{V}	• 2: Enciphering Matrices-4hrs			
		Chapter IV		
		: The idea of public key cryptography -3 hrs		
	• 2	: RSA-2 hrs		

- 1. A. Beautel spacher: Cryptology; Mathematical Association of America (Incorporated); 1994
- 2. H. Davenport: The higher arithmetic(6th Edn.); Cambridge Univ.Press;
- 3. G. H. Hardy and E.M. Wright: Introduction to the theory of numbers; Oxford International Edn: 1985
- 4. A. Hurwitz & N. Kritiko: Lectures on Number Theory; Springer Verlag, Universi text; 1986
- 5. T. Koshy: Elementary Number Theory with Applications; Harcourt / Academic Press;2002
- 6. D. Redmond: Number Theory; Monographs & Texts in Mathematics No: 220; Mar cel Dekker Inc.; 1994
- 7. P. Ribenboim: The little book of Big Primes; Springer-Verlag, New York; 1991
- 8. K.H. Rosen: Elementary Number Theory and its applications(3rd Edn.); Addison WesleyPub Co.; 1993
- 9. W. Stallings: Cryptography and Network Security-Principles and Practices; PHI; 2004
- 10. D.R. Stinson: Cryptography- Theory and Practice(2nd Edn.); Chapman & Hall / CRC (214. Simon Sing: The Code Book The Fourth Estate London); 1999
- 11. J. Stopple: A Primer of Analytic Number Theory-From Pythagoras to Riemann; Cambridge Univ Press; 2003
- 12. S.Y. Yan: Number Theory for Computing(2nd Edn.); Springer-Verlag; 2002

*70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	1	2	1	1	3	0	3	1	3	0	2
CO 2	2	3	2	1	3	0	3	2	3	0	3
CO 3	3	2	3	2	3	0	3	1	3	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	✓	√	✓
CO 2	✓	✓	√	✓	✓
CO 3	√	√	√	√	√

Programme B. So	Programme B. Sc. Mathematics Honours							
Course Code	MAT8CJ408 /]	MAT8CJ408 / MAT8MN408						
Course Title	DIFFERENTI	AL EQUATIONS						
Type of Course	Major							
Semester VIII								
Academic	400-499							
Level								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Basic knowledg	e of calculus of one variable	e and an introdu	ctory course in Real				
	Analysis							
Course	The course enha	ances the skill to solve ordin	ary differential e	equation using specific				
Summary	methods analyt	ically and computationally	for first and hi	gher order differential				
	equations. Most of the fundamental phenomena occurring in the nature are							
	expressed as a	expressed as a differential equation. Students must know how to model any						
	physical phenor	mena using differential equ	ations.					

Course Outcomes (CO):

СО	Statement Cognitive	Level*	Knowledg e Category#	Evaluation Tools used
CO1	Understand and apply the existence and uniqueness theorems for second-order differential equations, including methods such as the method of successive approximations and Picard's theorem.	Ap	P	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Analyse and solve second-order differential equations using power series methods, including ordinary points, regular singular points, and specific functions such as Gauss's Hypergeometric Equation and Legendre Polynomials.	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Evaluate and determine the stability of autonomous systems and critical points for linear and nonlinear systems using the phase plane analysis and Lyapunov's direct method.	Е	M	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text Book	1 11						
	Editio	on, George F. Simmons.					
			1				
Module	Unit	Content	Hrs	Marks			
			(48+ 12)	Ext: 70			
		Second Order Differential Equations	12)				
		Existence and Uniqueness of Solutions and Power					
		Series method of solving differential equations					
	1	69 Method of Successive Approximations					
	2	70 Picard's theorem, theorems A& B (proofs	1				
I		areoptional).	12	Min.15			
	3	71 Systems. The Second Order Equations	1				
	4	26 Introduction. A review of Power Series	1				
	5	27 Series solutions of first order equations	1				
	6	28 Second order Equations. Ordinary points	1				
	7	29 Regular singular points					
		Power Series Solutions and Special Functions					
	8	30 Regular Singular Points continued					
	9	31Gauss's Hypergeometric Equation					
II	10	31 Gauss's Hypergeometric Equation Reduction to	11	Min.15			
11		Hypergeometric equation		WIIII.13			
	11	32 The Point at Infinity					
	12	44 Legendre Polynomials (proofs of Rodrigues'					
		formula is optional)					
	10	Special Functions (Contd.)	_				
	13	45 Properties of Legendre Polynomials	_				
	14	46 Bessel functions.		Min.15			
III	15	46 Bessel functions. The Gamma function	12				
	16	47 Properties of Bessel functions	_				
	17	47 Properties of Bessel functions					
	A 4	Zeros and Bessel series. Bessel expansions					
	Auto	onomous Systems. Stability of Linear and Nonlinear Systems					
	18	58 Autonomous systems. The phase plane and its	1				
		phenomena					
IV	19	59 Types of critical points	13	Min.15			
	20	59 Types of critical points. Stability	1				
	21	60 Critical points and stability for linear system	1				
	22	61 Stability by lyapunov direct method	1				
		Open Ended					
İ	•	Proof of Picard's theorem	1				
V		Proof of theorem B of Unit I	12				
·		Proof of Rodrigues' formula for Legendre					
İ		polynomials					

 Analyse solutions of Differential Equations using 	
softwares like Python	

- 1. G. Birkhoff and G.C. Rota: Ordinary Differential Equations (3rd Edn.); Edn. Wiley & Sons; 1978
- 2. W.E. Boyce and R.C. Diprima: Elementary Differential Equations and boundary value problems (2nd Edn.); John Wiley & Sons, NY; 1969
- 3. A. Chakrabarti: Elements of ordinary Differential Equations and special functions; Wiley Eastern Ltd., New Delhi; 1990
- 4. E.A. Coddington: An Introduction to Ordinary Differential Equations; Prentice Hall of India, New Delhi; 1974
- 5. A. K. Nandakumaran, P. S. Datti, Raju K. George: Ordinary Differential Equations: Principles and Applications, Cambridge University Press

**70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	2	1	3	0	3	1	3	0	2
CO 2	2	2	1	0	3	0	3	2	3	0	3
CO 3	1	2	2	2	3	0	3	1	3	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	>	>	>	√
CO 2	√	√	√	✓	✓
CO 3	✓	√	√	✓	✓

^{*}Optional topics are exempted for end semester examination.

ELECTIVE COURSES

Programme	B.Sc. Mathe	B.Sc. Mathematics Honours					
Course Code	MAT5EJ30	MAT5EJ301(1)					
Course Title	MATHEM	ATICAL FOUNDATION	S OF COMPU	TING			
Type of Course	Elective (Sp	oecialisation - Mathematic	cal Computing)				
Semester	V						
Academic Level	300- 399	300- 399					
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Fundamenta	Fundamental Mathematics Concepts: Set, Functions, Logic					
Course Summary	This course familiarises students with a selection of topics from discrete mathematics which find regular applications in Computer Science.						

CO	Statement Cognitive		Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Apply mathematical induction to solve a variety of combinatorial problems.	Ap	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Analyse and classify different types of relations and equivalences in combinatorial settings.	An	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO3	Evaluate and demonstrate proficiency in using combinatorial techniques such as permutations, factorials, and binomial coefficients to solve complex problems.	Е	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

[#] - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

TextBook	(I) Jiří Matoušek and Jaroslav Nešetřil, Invitation to Discrete Mathematics, (2/e) Oxford University Press											
	(II) Ro	(II) Robin J Wilson, Introduction to Graph Theory (4/e), Prentice Hall										
Module	Unit	Content	Hrs	Ext.								
			(48+12)	Marks (70)								
I		Combinatorial Counting (Text 1)	12									
	1	1.1 An Assortment of problems										
	2	1.3 Mathematical Induction (Proof of Theorem 1.3.1 is optional)										
	3	1.5 Relations, 1.6 Equivalences and other special type of relation										
	4	3.1 Functions and subsets, 3.2 Permutations and factorials										
	5	3.3 Binomial Coefficients-										
	6	3.7 Inclusion-Exclusion Principle. (Third proof of Theorem 3.7.2 is										
		optional)										
II		Basics of Graph Theory (Text 1) 12										
	7	4.1 The notion of a graph; Isomorphism										
	8	4.2 Subgraphs, Components, Adjacency Matrix										
	9	4.3 Graph Score (Proof of Theorem 4.3.3 is optional)										
	10	4.4 Eulerian Graphs (Second proof of Theorem 4.4.1 and lemma 4.4.2 are optional)										
	11	4.5 Eulerian Directed Graph										
	12	5.1 Definition and characterizations of trees										
III		Matching and Colouring (Text 2)	12									
	13	Planar Graphs (Proof of Theorem 12.2 and Theorem 12.3are optional)										
	14	Euler's formula (up to Corollary 13.4)										
	15	Euler's formula (from Corollary 13.4)										
	16	Coloring Graphs										

	17	Coloring Maps (Proof of Theorem 19.2 and Theorem 19.4are optional)						
	18	Hall's Marriage theorem						
IV		Probabilistic Method (Text 1)	12					
	19	10.1 Proofs by Counting (2-Coloting revisited and related topics are optional)						
	20	10.2 Finite Probability Spaces (up to Random graphs)						
	22	10.2 Finite Probability Spaces (From Random graphs)						
	22	10.3 Random Variables and their Expectations						
V		Open Ended 12						
	Metho	Hamiltonian Graphs, 2-Connectivity, Examples of applications of Probabilistic Method, Ramsey Theory, Generating Functions, simulating random experiments in python and calculating expectations. Brook's Theorem.						

- 1. Discrete Mathematics by Norman L. Biggs (2nd Edition, 2002), Oxford University Press (ISBN- 13: 978-0198507178)
- 2. Discrete Mathematics and Applications by Kenneth Rosen (7th Edition, 2012), McGraw-Hill Education (ISBN-13: 978-0073383095)
- 3. Discrete Mathematics: Elementary and Beyond by László Lovász, József Pelikán, Katalin Vesztergombi, Springer 2003, ISBN-13: 978-0387955858.

Note: 1) Optional topics are exempted for end semester examination

2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	1	3	1	3	1	3	0	2
CO 2	2	2	1	1	3	1	3	2	3	0	2
CO 3	2	3	2	2	3	1	3	2	3	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	ssignment Seminar		End Semester Examinations
CO 1	√	>	>	>	√
CO 2	√	√	√	√	√
CO 3	√	√	√	✓	✓

Programme	B.Sc. Mathematic	B.Sc. Mathematics Honours								
Course Code	MAT5EJ302(1)	MAT5EJ302(1)								
Course Title	DATA STRUCT	DATA STRUCTURES AND ALGORITHMS								
Type of Course	Elective (Special	Elective (Specialisation- Mathematical Computing)								
Semester V										
Academic Level	300-309	300-309								
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours						
	4	4	-	60						
Pre-requisites		Fundamental Mathematics Concepts: Sets, Functions Discrete Mathematics								
Course Summary		miliarises students with inking using some of the	•	*						

CO	Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse and compare the efficiency of algorithms for computing Fibonacci numbers, distinguishing between exponential and polynomial approaches.	Е	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Demonstrate proficiency in asymptotic analysis to assess the efficiency of algorithms.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Apply classical algorithms for number operations, including addition, multiplication, and modular arithmetic, to solve computational problems efficiently.	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text Book		Algorithms by Sanjoy Dasgupta, Christos H. Papadimitriou, Umesh Vazirani.McGraw- Hill Education, 2006. ISBN: 978-0073523408.							
Module	Unit	Hrs (48+12)	Ext. Marks (70)						
I		Introduction	12						
	1	Computing Fibonacci Numbers: Exponential and Polynomial Algorithms							
	2	Efficiency of Algorithms: Asymptotic Analysis, Big-O Notation							
	3	Algorithms with Numbers: Efficiency of classical Addition and Multiplication algorithms							
	4	Algorithms for Modular Arithmetic							
	5	Euclid's Algorithm for GCD							
	6	Primality Testing							
	Sectio	ons from Text: 0.2, 0.3, 1.1, 1.2, 1.3							
II		Divide and Conquer Algorithms and Graph Search 12							
	7	Fast Integer Multiplication							
	8	Recursive Relations							
	9	Binary Search							
	10	Merge Sort							
	11	Graph Representations: Adjacency Matrix, Adjacency List							
	12	Depth First Search Undirected Graphs							
	13	Depth First Search in Directed Graphs							
	Sectio	ons from Text: 2.1, 2.2. 2.3, 3.1-3.3.							
III		Graph Algorithms	12						
	14	Checking connectivity							
	15	Directed Acyclic Graphs, Strongly Connected Components							
	16	Breadth First Search and Computation of distances.							
	17	Weighted Graphs and Dijkstra's Algorithm							
	18	Priority queue implementations							

	19	Shortest Paths in Directed Acyclic Graphs	
	Section		
IV		12	
	20		
	21	Kruskal's Algorithm	
	22	Data structure for disjoint sets.	
	23	Prim's algorithm	
	24	Dynamic Programming and Shortest Path in Directed Acyclic Graphs (DAG)	
	25	All pairs of Shortest Paths and Floyd Warshall Algorithm	
	Section	ons from Text: 5.1, 5.4, 6.1, 6.6.	
V		12	
(Open Ended)	27	Implement the following algorithms in Python - Fibonacci Numbers (exponential and polynomial)	
		- Euclid's algorithm (extended version)	
		- Primality Testing	
		- Depth First Search (and checking connectivity)	
		- Breadth First Search (and calculating distances)	
		- Dijkstra's Algorithm	

- 1. *The Design and Analysis of Algorithms* by Dexter C Kozen. Texts and Monographs in Computer Science, Springer, 1992. ISBN:0-387-97687-6.
- 2. *Introduction to Algorithms* (3rd Edition) by Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein. PHI Learning, 2009. ISBN:978-81-203-4007-7.
- 3. Algorithm Design by Jon Kleinberg and Eva Tardos. Pearson, 2015. ISBN:978-93-325-1864.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	3	2			3	1	3	3	3	0	3
CO 2	2	3	2	2			3	1	3	3	3	0	2
CO 3	2	3	3	2			3	1	3	3	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	>	>	>	>
CO 2	✓	✓	√	✓	✓
CO 3	√	✓	√	√	√

Programme	B.Sc. Mathematics Honours							
Course Code	MAT6EJ301(1)							
Course Title	NUMERICAL ANALYSIS							
Type of	Elective (Specialisation- Mathematical Computing)							
Course								
Semester	VI							
Academic	300- 399							
Level								
Course	Credit	Lecture/Tutorial	Practical	Total Hours				
Details		per week	per week					
	4	4	-	60				
Pre-requisites	1. Real analysis							
	2. Linear algebra							
	3. Basics of Python Programming							
Course	This course familiarises students with the fundamental numerical analysis. Moreover,							
Summary	the course facilitates students to apply results from real analysis and linear algebra to perform quantitative analysis of numerical solutions.							

CO CO Statement Cognitive			Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand and apply the Bisection Method, Iteration Method, Newton- Raphson Method, and Secant Method to solve algebraic and transcendental equations numerically.	Ap	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Implement interpolation methods such as Newton's formulae, Lagrange's interpolation formula, and divided differences to approximate functions from discrete data.	Ap	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO3	Implement numerical methods such as Euler's method, Modified Euler's Method, Runge-Kutta method, and Adams-Moulton Method to solve ordinary differential equations (ODEs).	Ap	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)
- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

		S. S. Sastry, Introductory Methods of Numerical Analysis (5/e), PHILearning (2012) [2]. Dimitrios Mitsotakis: Computational Mathematics: An Introductionto Numerical Analysis and Scientific Computing with Python, CRCPress (2023), ISBN 978-1-032-26240-6. [3]. Jupyter Notebooks of [2] available at: https://github.com/dmitsot/computational mathematics	
Module Unit Conte nt			Hrs (48+12)
I	Nur	nerical Solutions of Algebraic and Transcendental equations (Text 1)	12
1	1	2.1 Introduction	12
	2	2.2 Bisection Method	
	3	2.4 Iteration Method (Derivation of Condition for Convergence and	
	3	Acceleration of Convergence are optional)	
	4	2.5 Newton- Raphson Method (Generalized Newton's Method is	
		optional)	
	5	2.7 Secant Method	
II		Interpolation (Text 1)	12
	6	3.1 Introduction, 3.3.1 Forward differences, 3.3.2 Backward differences	
	7	3.6 Newton's formulae for interpolation (up to and including	
		Example3.5)	
	8	3.6 Newton's formulae for interpolation (From Example 3.6)	
	9	3.9.1 Langrange's interpolation formula	
	10	3.10 Divided differences and their properties	
	11	3.10.1 Newton's General interpolation formula	
III		Numerical Differentiation and Integration (Text 1)	12
	12	6.1 Introduction, 6.2 Numerical Differentiation (6.2.1, 6.2.2 and 6.2.3 are	
	12	optional)	
	13	6.4.1 Trapezoidal Rule	
	14	6.4.2 Simpson's 1/3-Rule 6.4.3 Simpson's 3/8 Rule	
	16	6.10 Numerical Double Integration	
IV	10	Numerical Solutions of Ordinary Differential Equation (Text 1)	12
1 4	17	8.1 Introduction	12
	18	8.2 Solution by Taylor's series,	
	19	8.4 Euler's method (8.4.1 is optional)	
	20	8.4.2 Modified Euler's Method	
	21	8.5 Runge-Kutta method	
	22	8.6.1 Adams-Moulton Method	
V		Numerical Algorithms and Lab	12
		Practicals	
	1	Jupyter Lab and Notebooks. Google Colab. Instructions in [6] and [7].	
		Quick review of Python Programming. Ch 1 Notebook from [3].	

	2	Continue Quick Review of Python. Notebook [9]. Numpy and Scipy	
		review from [7]. Ch 2 Notebook from [3].	
	3	Bisection Method. Algorithm and Program.	
		Jupyter Notebook: Ch 5 of [3]. Refer also 5.1 of [2].	
		Optional: Program to compute speed of convergence.	
		Optional: False Position variant from [12].	
	4	Fixed Point Method (Iteration Method). Algorithm and Program.	
		Notebook: Ch 5 of [3]. Reference: 5.2 of [2].	
	5	Newton-Raphson Method. Algorithm and	
		Program.Notebook: Ch 5 of [3]. Reference: 5.3	
		of [2].	
	6	Secant Method. Algorithm and Program.	
		Notebook: Ch 5 of [3]. Reference: 5.4 of [2].	
	7	Fast computation using SciPy.Optimize.	
		Notebook: Ch 5 of [3]. Reference: 5.6 of [2].	
	8.	Lagrange Interpolation.	
		Notebook: Ch 6 of [3]. Reference: 6.1 of [2].	
	9	Newton's method for Interpolation using Divided Differences.	
		Notebook: Ch 6 of [3]. Reference: 6.2 of [2].	
	10	Using SciPy.Interpolate Module. Lagrange Interpolation Only.	
		Notebook: Ch 6 of [3]. Reference: 6.6 of [2].	
	11	Numerical Differentiation. Forward and Backward Differences. First	
		Order and Second Order Derivative Approximations.	
	- 10	Notebook: Ch 8 of [3]. Reference: 8.1 of [2].	
	12	Numerical Integration. Midpoint Rule. Composite Trapezoidal Rule.	
		Composite Simpson's Rule.	
	10	Notebook: Ch 7 of [3]. Reference: 7.1. of [2].	
	13	The Module scipy.integrate. Trapezoidal, Simpson.	
		Reference: 7.4 of [2]. Notebook: Ch 7 of [3].	
	14	Euler's Method. Improved Euler's Method. Reference: 8.2 of [2].	
		Notebook: Ch 8 of [3].	
I 0			

References:

- 1. F.B. Hildebrand: Introduction to Numerical Analysis, TMH.
- 2. J.B. Scarborough: Numerical Mathematical Analysis, Oxford and IBH
- 3. Joakim Sundnes, Introduction to Scientific Programming with Python. Springer (2020). ISBN 978-3-030-50355-0. Open Access at: https://link.springer.com/book/10.1007/978-3-030-50356-7
- 4. Sven Linge and Hans Petter Langtagen, Programming for Computations -- Python. A Gentle Introduction to Numerical Simulations With Python. Springer (2018). ISBN 978-3-319-81282-3. Open Access at: https://link.springer.com/book/10.1007/978-3-319-32428-9

Note: 1) Optional topics are exempted for end semester examination.

- 2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.
- 3) Module V is algorithms and lab computations. Algorithms for each numerical method can be taught along with the Python code in lab sessions. The second text [2] stresses computation from the beginning and is a lab reference. The Jupyter Notebooks [3] intended for live lab lessons.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	3	3	3	0	2
CO 2	2	3	3	2	3	1	3	3	3	0	2
CO 3	3	3	3	2	3	1	3	3	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	>	>	✓
CO 2	✓	√	√	√	✓
CO 3	√	√	√	√	✓

Programme	B.Sc. Mathematics Honours							
Course Code	MAT6EJ302(1)							
Course Title	MATHEMATICS FOR DIGITAL IMAGES							
Type of Course	Elective (Speci	alisation- Mathematical C	omputing)					
Semester	VI							
Academic	300 - 399							
Level								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-Requisites	Basic Geometry	& Algebraic Structures						
Course	The focus of thi	s paper is mathematics unde	erlying patterns	which in converse can				
Summary		luce patterns automatically						
		user. We begin with isometr						
	which preserve	distance and hence shape.	These fall into	two classes: the direct				
	ones are rotation	ons or translation, and the in	ndirect ones ref	lections or glides. We				
		for combining isometries, a						
	group in particu	ılar. We also apply this to cl	lassifying all 1-	dimensional or 'braid'				
	patterns into s	even types. Our next foci	us is on symn	netries; that is, those				
	isometries which	h send a pattern onto itself,	each part					
	going to another	er with the same size and s	shape. A plane	pattern is one having				
	translation symmetries in two non-parallel directions. These are made up of							
	parallelogram s	haped cells, falling into five	e types. Finally,	we deduce the				
	existence of	17 pattern types, each	with its own	set of interacting				
	symmetry opera	ations.						

СО	Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe the concept of isometries in geometry, including translation, rotation, and reflection, and understand their properties and how they preserve distances.	U	С	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Demonstrate the ability to compose isometries, understand their combined effects, and analyse the outcomes of sequential transformations.	Ap	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO3	Investigate the classification of plane patterns, including different net types such as parallelogram nets, rectangular nets, centred rectangular nets, square nets, and hexagonal nets, and analyse examples of the 17 plane pattern types.	An	F	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Text		HEMATICS FOR DIGITAL IMAGES: Creation, Compression, I	Restoration	,					
Introduction 12	Book	Recognition. S G Hoggar- Cambridge University Press.								
1 Isometries and their sense 2 The plane and vectors 3 Isometries – Translation, Rotation, Reflection 4 The sense of an isometry 5 The Classification of isometries 6 Composing isometries Sections from Text (i): Chapter 1 – 1.1, 1.2, 1.3	Module	Unit	Content		Marks					
2 The plane and vectors 3 Isometries — Translation, Rotation, Reflection 4 The sense of an isometry 5 The Classification of isometries 6 Composing isometries Sections from Text (i): Chapter 1 – 1.1, 1.2, 1.3 II How Isometries Combine 7 Reflections are the key 8 Some useful compositions 9 The Image of a line of symmetry 10 The dihedral group 11 Appendix on groups Sections from Text (i): Chapter 2 – 2.1, 2.2, 2.3, 2.4, 2.5 III The Seven Braid Patterns, Plane Patterns & Symmetries 12 Classification of braids 13 Constructing braid patterns 14 Translations and nets 15 Cells 16 The five net types 17 Nets allowing a reflection Sections from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3 IV The 17 Plane Patterns 12 18 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB	I		Introduction	12						
3 Isometries – Translation, Rotation, Reflection 4 The sense of an isometry 5 The Classification of isometries 6 Composing isometries Sections from Text (i): Chapter 1 – 1.1, 1.2, 1.3 II How Isometries Combine 7 Reflections are the key 8 Some useful compositions 9 The Image of a line of symmetry 10 The dihedral group 11 Appendix on groups Sections from Text (i): Chapter 2 – 2.1, 2.2, 2.3, 2.4, 2.5 III The Seven Braid Patterns, Plane Patterns & Symmetries 12 Classification of braids 13 Constructing braid patterns 14 Translations and nets 15 Cells 16 The five net types 17 Nets allowing a reflection Sections from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3 IV The 17 Plane Patterns 12 18 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB	_	1								
4 The sense of an isometry 5 The Classification of isometries 6 Composing isometries Sections from Text (i): Chapter 1 – 1.1, 1.2, 1.3 II How Isometries Combine 7 Reflections are the key 8 Some useful compositions 9 The Image of a line of symmetry 10 The dihedral group 11 Appendix on groups Sections from Text (i): Chapter 2 – 2.1, 2.2, 2.3, 2.4, 2.5 III The Seven Braid Patterns, Plane Patterns & Symmetries 12 Classification of braids 13 Constructing braid patterns 14 Translations and nets 15 Cells 16 The five net types 17 Nets allowing a reflection Sections from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3 IV The 17 Plane Patterns 12 18 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB		2	The plane and vectors							
5 The Classification of isometries 6 Composing isometries Sections from Text (i): Chapter 1 – 1.1, 1.2, 1.3 How Isometries Combine 7 Reflections are the key 8 Some useful compositions 9 The Image of a line of symmetry 10 The dihedral group 11 Appendix on groups Sections from Text (i): Chapter 2 – 2.1, 2.2, 2.3, 2.4, 2.5 III The Seven Braid Patterns, Plane Patterns & Symmetries 12 Classification of braids 13 Constructing braid patterns 14 Translations and nets 15 Cells 16 The five net types 17 Nets allowing a reflection Sections from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3 IV The 17 Plane Patterns 12 18 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB		3	Isometries – Translation, Rotation, Reflection							
Composing isometries Sections from Text (i): Chapter 1 - 1.1, 1.2, 1.3 II		4	The sense of an isometry	1						
Sections from Text (i): Chapter 1 – 1.1, 1.2, 1.3 12 13 14 14 15 16 16 16 16 16 16 16		5	The Classification of isometries							
How Isometries Combine 12		6	Composing isometries							
7 Reflections are the key 8 Some useful compositions 9 The Image of a line of symmetry 10 The dihedral group 11 Appendix on groups Sections from Text (i): Chapter 2 – 2.1, 2.2, 2.3, 2.4, 2.5 III The Seven Braid Patterns, Plane Patterns & Symmetries 12 Classification of braids 13 Constructing braid patterns 14 Translations and nets 15 Cells 16 The five net types 17 Nets allowing a reflection Sections from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3 IV The 3 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB		Sectio	ns from Text (i): Chapter 1 – 1.1, 1.2, 1.3							
8 Some useful compositions 9 The Image of a line of symmetry 10 The dihedral group 11 Appendix on groups Sections from Text (i): Chapter 2 – 2.1, 2.2, 2.3, 2.4, 2.5 III The Seven Braid Patterns, Plane Patterns & Symmetries 12 Classification of braids 13 Constructing braid patterns 14 Translations and nets 15 Cells 16 The five net types 17 Nets allowing a reflection Sections from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3 IV The 17 Plane Patterns 12 18 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB	II		How Isometries Combine	12						
9 The Image of a line of symmetry 10 The dihedral group 11 Appendix on groups Sections from Text (i): Chapter 2 – 2.1, 2.2, 2.3, 2.4, 2.5 III The Seven Braid Patterns, Plane Patterns & Symmetries 12 Classification of braids 13 Constructing braid patterns 14 Translations and nets 15 Cells 16 The five net types 17 Nets allowing a reflection Sections from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3 IV The 17 Plane Patterns 12 18 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB		7	Reflections are the key							
10 The dihedral group 11 Appendix on groups Sections from Text (i): Chapter 2 - 2.1, 2.2, 2.3, 2.4, 2.5 III		8	Some useful compositions							
II Appendix on groups Sections from Text (i):Chapter 2 - 2.1, 2.2, 2.3, 2.4, 2.5		9	The Image of a line of symmetry							
III The Seven Braid Patterns, Plane Patterns & Symmetries 12 Classification of braids 13 Constructing braid patterns 14 Translations and nets 15 Cells 16 The five net types 17 Nets allowing a reflection Sections from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3 IV The 17 Plane Patterns 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V(Open Ended) V(Open Advanced Topics (Practical) 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB		10	The dihedral group							
III The Seven Braid Patterns, Plane Patterns & Symmetries 12 Classification of braids 13 Constructing braid patterns 14 Translations and nets 15 Cells 16 The five net types 17 Nets allowing a reflection Sections from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3 IV The 17 Plane Patterns 12 18 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB										
12 Classification of braids 13 Constructing braid patterns 14 Translations and nets 15 Cells 16 The five net types 17 Nets allowing a reflection Sections from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3 The 17 Plane Patterns 12 18 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) 12 Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB										
13 Constructing braid patterns 14	III]	<u> </u>	12						
14 Translations and nets 15 Cells 16 The five net types 17 Nets allowing a reflection Sections from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3 IV The 17 Plane Patterns 12 18 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB										
15 Cells 16 The five net types 17 Nets allowing a reflection Sections from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3 IV The 17 Plane Patterns 12 18 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Ended) Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB										
16 The five net types 17 Nets allowing a reflection Sections from Text (i): Chapter 3, Chapter 4 – 4.1, 4.2, 4.3 IV The 17 Plane Patterns 12 18 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB		14								
17 Nets allowing a reflection										
IV The 17 Plane Patterns 12 18 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Ended) Ended) Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB										
The 17 Plane Patterns 18 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB		1								
18 Preliminaries 19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB		Sectio								
19 The general parallelogram net 20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB	IV		-	12						
20 The rectangular net 21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB										
21 The centred rectangular net 22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB										
22 The square net 23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB										
23 The hexagonal net 24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB			E .							
24 Examples of the 17 plane pattern types 25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB			4							
25 Scheme for identifying pattern types Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB										
Sections from Text (i): Chapter 5 – 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 V (Open Advanced Topics (Practical) 12 Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB										
V (Open Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB										
Ended) 26 Basic Syntax and Scalar arithmetic operations and calculations by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB	T7 / C	Sectio		10						
by Using MATLAB 27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB				12						
27 Arithmetic operations in matrix data & Reading an Image File by Using MATLAB	Ended)	26	-							
		27	Arithmetic operations in matrix data & Reading an Image File							
References:	D. C		by Using MATLAB							
150	Reference	es:								

- 1. Baldock R and Graham J (2000) Image Processing and analysis, a practical approach, Oxford University Press
- 2. Gonzalez R C and Woods R E (1993) Digital Image Processing, Addison-Wesley

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	2	2	3	0	2
CO 2	2	3	2	1	2	1	2	2	2	0	2
CO 3	3	3	2	1	3	1	3	3	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	>	>	✓
CO 2	√	√	√	√	✓
CO 3	√	√	√	√	√

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours					
Course Code	MAT5EJ305						
Course Title	HIGHER ALC	GEBRA					
Type of Course	Elective						
Semester	V						
Academic Level	300 - 399						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Fundamental M	Mathematics Concepts: Set, Fu	unctions, Logic				
Course Summary	This course explores topics that follow as a direct continuation of high school						
	algebra, like the general theory of equations, and classification of second-						
	degree curves a	and surfaces.					

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand and apply the algebraic	Ap	P	Internal
	methods used in solving polynomial			Exam/Assign
	equations of low degrees and place them			ment/Seminar/
	in a general context			Viva / End
				Sem Exam
CO2	Understanding of the fundamental	U	С	Internal
	concepts of algebraic equations, including			Exam/Assign
	the Identity Theorem and the Fundamental			ment/Seminar/
	Theorem of Algebra.			Viva / End
				Sem Exam
CO3	Analyse and evaluate various solutions of	An	С	Internal
	equations, including Cardan's Formulas			Exam/Assign
	and trigonometric solutions, and identify			ment/Seminar/
	the irreducible cases.			Viva / End
				Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

[#] - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text	Univer	metry(2/e), David A Brannan, Mathew F. Esplen, Jeremy sity Press (2012) ISBN: 978-1-107-64783-1 ory of Equations, J. V. Uspensky, McGraw Hill (1948), IS	•	C
Module	Unit	Content	Hrs (48+12)	Ext. Marks (70
I		Theory of Equations	16	
	1	Chapter II -Section 3: Division of Polynomials		
	2	Chapter II -Section 4: The Reminder Theorem		
	3	Chapter II- Section 5: Synthetic Division		
	4	Chapter II- Section 7: Taylor's Formula		
	5	Chapter III - Section 1: Algebraic Equations		
	6	Chapter III - Section 2: Identity Theorem		
	7	Chapter III - Section 3: The Fundamental Theorem of Algebra		
II		Cubic And Biquadratic Equations	16	
	8	Chapter III - Section 4: Imaginary Roots of Equations with Real Coefficients		
	9	Chapter III - Section 5: Relations Between Roots and Coefficients		
	10	Chapter IV - Section 1: Limits of Roots Section 2: A Method to Find an Upper Limit of Positive Roots		
	11	Chapter IV - Section 3: Limit for Moduli of Roots		
	12	Chapter V - Section 1: What is the "Solution" of an Equation?, Section 2: Cardan's Formulas, Section 3: Discussion of Solution		
	13	Chapter V - Section 4: Irreducible CaseSection 5: Trigonometric Solution		
	14	Chapter V- Section 6: Solution of BiquadraticEquations		

III		Conic Sections	12	
	15	Section 1.1.1: Conic Sections, Section 1.1.2: Circles		
	16	Section 1.1.3: Focus-Directrix Definition of the Non-Degenerate Conics		
	17	Section 1.1.4: Focal Distance Properties of Ellipseand Hyperbola		
	18	Section 1.1.5: Dandelin Spheres		
IV		Quadric Surfaces	4	
	19	Section 1.2.2: Reflections		
	20	Section 1.3: Recognizing Conics		
	21	Section 1.4.1: Quadric Surfaces in ℝ ³		
	22	Section 1.4.2: Recognizing Quadric Surfaces		
V		Open Ended Module: Affine Maps	12	
	1	Geometry and Transformations - What is Euclidean Geometry? Isometry, Euclidean properties, Euclidean transformation, Euclidean-Congruence		
	2	Affine Transformations, Basic Properties of Affine Transformations		
	3	Fundamental Theorem of Affine Geometry		

References:

- 1. Higher Algebra, Barnard & Child, St. Martin's Press, NY, USA (Public Domain, Copyright exhausted)
- 2. Thomas & Finney, Calculus & Analytic Geometry, Addison Wesley
- 3. George A Jennings: Modern Geometry with Applications Universitext, Springer (1994) ISBN: 0-387-94222-X
- 4. Walter Meyer: Geometry and its Application(2/e) Elsever, Academic Press(2006) ISBN: 0-12-369427-0

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

		ı			ı	ı				ı	
	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	2	3	1	2	1	3	0	1
CO 2	3	3	2	2	3	1	2	1	3	0	1
CO 3	2	3	3	2	3	1	3	1	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	>	>	>
CO 2	✓	√	√	√	✓
CO 3	√	√	√	√	√

Programme	B. Sc. Mathematics Honours							
Course Code	MAT5EJ306	MAT5EJ306						
Course Title	LINEAR PRO	OGRAMMING						
Type of Course	Elective							
Semester	V							
Academic Level	300 - 399							
Course Details	Credit Lecture/Tutorial Practical Total H							
		per week	per week					
	4	4	-	60				
Pre-requisites	Basic Calculus	s and Linear Algebra	-					
Course	Linear Progra	mming is a mathematical m	nodelling techn	ique in which a				
Summary	linear function	n is maximized or minimiz	ed when subject	ected to various				
	constraints. Th	is technique has been useful for	or guiding quan	titative decisions				
	in business pla	nning, in industrial engineer	ing, and—to a	lesser extent—in				
	the social and	physical sciences. This cour	se begins with	convex sets and				
	extrema of fun	ctions for a sound basis of th	ne subject. It the	en develops into				
	LP problems in	ncluding Transportation and A	Assignment prob	olems.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Able to identify and analyse the properties of convex sets, including open and closed sets, convex hulls, and vertices.	An	С	Internal Exam/Assignment/Se minar/ Viva / End Sem Exam
CO2	To demonstrate proficiency in applying optimization techniques such as gradient descent, constrained extrema, and the method of Lagrange multipliers to solve real-valued functions.	Ap	Р	Internal Exam/Assignment/Se minar/ Viva / End Sem Exam
CO3	To formulate and solve linear programming problems, including transportation and assignment problems, using techniques such as simplex method and duality.	U	Р	Internal Exam/Assignment/Se minar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) #-Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text	Optimi	zation Methods in Operation Research and System Analysis (4 th edition), K.V
book	_	C Mohan, New Age International (P)Limited (2016)
Module	Unit	Content
I		Module I
	1	Chapter 1 Section 11: Open and Closed sets in E _n
	2	Section 12: Convex Linear Combination, Convex Sets
	3	Section 13: Intersection of Convex Sets, Convex Hull of a Set
		Section 14: Vertices or Extreme Points of a Convex Set
	4	Section 15: Convex Polyhedron
		Section 16: Hyperplanes, Half-spaces and Polytopes
	5	Section 17: Separating and Supporting Hyperplanes (Proof of Theorem 18 is
		optional)
		Section 18: Vertices of a Closed Bounded Convex Set (Proof of Theorem
		21,22,23 are optional)
		Section 19: Summary
		Section 20: Quadratic Forms
II		Module II
	6	Chapter 2 Section 11: Convex Functions
	7	Section 12: General Problem of Mathematical Programming
	8	Chapter 3 Section 1: Introduction
		Section 2: LP in Two-Dimensional Space
	9	Section 3: General L P Problem
		Section 4: Feasible Solutions (Proof of Theorem 1 is optional)
		Section 5: Basic Solutions
		Section 6: Basic Feasible Solutions (Proof of Theorem 2,3 are optional)
		Section 7: Optimal Solution (Proof of Theorem 4,5 are optional)
		Section 8: Summary
	10	Section 9: Simplex Method
		Section 10: Canonical Form of Equations
		Section 11: Simplex Method (Numerical Example)
		Section 12: Simplex Tableau
	11	Section 13: Finding the First b.f.s; Artificial Variables
		Section 14: Degeneracy
	12	Section 15: Simplex Multipliers
III		Module III
	13	Chapter 3 Section 17: Duality in LP Problems
	14	Section 18: Duality Theorems (Proof of Theorem 7,8,9, 10,11 are optional)
		Section 19: Applications of Duality
	15	Section 20: Dual Simplex Method
		Section 21: Summary of Simplex Methods (III Revised Simplex Method is
		optional)
	16	Section 22: Applications of LP
IV		Module IV

	17	Chapter 4 Section 1: Introduction
		Section 2: Transportation Problem
		Section 3: Transportation Array
		Section 4: Transportation Matrix
		Section 5: Triangular Basis (Proof of Theorem 1 is optional)
		Section 6: Finding a Basic Feasible Solution
	18	Section 7: Testing For Optimality
	19	Section 8: Loop in Transportation Array (Proof of Theorem 2 is optional)
		Section 9: Changing the Basis
	20	Section 10: Degeneracy
		Section 11: Unbalanced Problem
	21	Section 14: Assignment Problem (Proof of Theorem 3 is optional)
	22	Section 15: Generalized Transportation Problem
		Exercise Questions in Assignment Problem
V		Open Ended
		Linear Programming Using Scipy, Prog Reference 1.
		Dual Simplex Solved Programming Exercises in Python from Vanderbei
		(Reference 1), Prog Reference 2.
		Linear Programming in Python using IBM CPlex Community Edition. Prog
		Reference 3.
		Transportation Problem in Python. Prog Reference 4.
		Linear Programming in Julia. Prog Reference 5. Ch 3 Basics of Julia Programming
		Language, Ch 5 The Simplex Method.
	. Refer	rences:
	1. G.	Hadley : Linear Programming Addison-Wesley Pub Co Reading, Mass (1975)
	2. S.S New D	S. Rao : Optimization – Theory and Applications (2nd Edn.) Wiley Eastern (P) Ltd. elhi.
		ussel L Ackoff and : Fundamentals of Operation Research Maurice W.Sasioni Wiley n Ltd. New Delhi. (1991)
		narles S. Beightler, : Foundations of Optimization D.T. Philips & D.J. Wilde (2nd Prentice Hall of India, Delhi (1979)
	Progra	amming References for Open-Ended section:
	1. Line	ear Programming using Scipy, https://python.quantecon.org/lp_intro.html
	2. Van	derbei's book homepage: https://vanderbei.princeton.edu/LPbook/
	3. CPle	ex Jupyter Notebook:
	https://ming.ip	github.com/IBMDecisionOptimization/tutorials/blob/master/jupyter/Linear_Program
	Installa	ntion: http://ibmdecisionoptimization.github.io/docplex-doc/README.md.html

- 4. Solving Transportation Problem using Linear Programming in Python: https://machinelearninggeek.com/solving-transportation-problem-using-linear-programming-in-python/
- 5. Changhyun Kwon, Julia Programming for Operations Research 2/e , https://www.softcover.io/read/7b8eb7d0/juliabook2/simplex

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	1	2	1	3	0	1
CO 2	3	3	3	2	2	1	3	1	3	0	1
CO 3	2	3	3	2	3	1	3	1	3	0	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- ' Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	>	>	>	✓
CO 2	✓	√	✓	√	✓
CO 3	√	√	√	√	√

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours					
Course Code	MAT6EJ305	MAT6EJ305					
Course Title	TOPOLOGY	OF METRIC SPACES					
Type of Course	Elective						
Semester	VI						
Academic Level	300 - 399	300 - 399					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	1. Fundamenta	l Mathematics Concepts: Set,	Functions, Log	ic			
	2. Real Analys:	2. Real Analysis					
Course	This course far	This course familiarises students with the basic tools and phenomenology of					
Summary	topology by in	opology by introducing metric spaces as a generalisation of the familiar					
	Euclidean spac	es.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Demonstrate understanding of	U	С	Internal
	fundamental concepts in metric			Exam/Assignment/
	spaces and basic examples of			Seminar/ Viva /
	metric spaces.			End Sem Exam
CO2	To analyse and evaluate the	An	Е	Internal
	basic topology of metric spaces,			Exam/Assignment/
	including open sets, closed sets,			Seminar/ Viva /
	interior, closure, and boundary			End Sem Exam
	points			
CO3	Demonstrate proficiency in	Ap	P	Internal
	applying concepts of			Exam/Assignment/
	convergence, completeness, and			Seminar/ Viva /
	continuity in metric spaces,			End Sem Exam
	including understanding Cauchy			
	sequences, completeness, and			
	continuity of functions.			
	1 (7) 11 1 1 (17) 4 1			, z

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook	Introduction to Topology and Modern Analysis, George F. Simmons, Krieger Publishing Company (1982) ISBN-0-89874-551-9						
Module	Unit	Content	Hrs (48+ 12)				
I	Introduction to Metric Spaces						
	1	Chapter 1 Section 5: Partitions and Equivalence Relations					
	2	Chapter 1 Section 6: Countable Sets					
	3	Chapter 1 Section 7: Uncountable Sets					
	4	Chapter 2 Section 9: The Definition and Some Examples (Topics up to and including Example 2)					
	5	Chapter 2 Section 9: The Definition and Some Examples (Topics from Example 3 onwards)					
II		Basic Topology of Metric Spaces					
	6	Chapter 2 Section 10: Open Sets (Topics up to and including Theorem A)					
	7	Chapter 2 Section 10: Open Sets (Theorem B and Theorem C)					
	8	Chapter 2 Section 10: Open Sets (Topics from Theorem D onwards)	10				
	9	Chapter 2 Section 11: Closed Sets (Topics up to and including Theorem C)					
	10	Chapter 2 Section 11: Closed Sets (Topics from Theorem D onwards)	-				
III	10	Convergence, Completeness & Continuity					
	11	Chapter 2 Section 12: Convergence, Completeness, and Baire's Theorem(Topics up to Theorem A)					
	12	Chapter 2 Section 12: Convergence, Completeness, and Baire's Theorem(Theorem A and Theorem B)					
	13	Chapter 2 Section 12: Convergence, Completeness, and Baire's Theorem (Topics from Theorem C onwards)	12				
	14	Chapter 2 Section 13: Continuous Mappings (Topics up to and including Theorem A)					
	15	Chapter 2 Section 13: Continuous Mappings (Theorem B and Theorem C)					
	16	Chapter 2 Section 13: Continuous Mappings (Topics from Theorem Donwards)					
IV		Special Classes of Metric Spaces					
	17	Chapter 2 Section 14: Spaces of Continuous Functions (Topics up to FirstLemma)					
	18	Chapter 2 Section 14: Spaces of Continuous Functions (First Lemma, Second Lemma)					
	19	Chapter 2 Section 14: Spaces of Continuous Functions (Topics from Theorem A onwards)	14				
	20	Chapter 2 Section 15: Euclidean and Unitary Spaces (Topics up to First Lemma)	14				
	21	Chapter 2 Section 15: Euclidean and Unitary Spaces (First Lemma, Second Lemma)					
	22	Chapter 2 Section 15: Euclidean and Unitary Spaces (Topics fromTheorem A onwards)					
		Compactness In Metric Spaces					

The Heine-Borel Property Bolzano-Weierstrass Property Lebesgue's Covering Lemma V Sequential Compactness Compactness – Open Cover Formulation Total Boundedness Compactness, Completeness & Total Boundedness Equicontinuity & the Arzela-Ascoli Theorem

References:

- 1. Introduction to General Topology, K. D. Joshi, New Age International.
- 2. A First Course In Topology, James R. Munkres, Prentice Hall of India
- 3. Topology of Metric Spaces, S. Kumaresan, Narosa Publishing House.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	1	3	1	2	1	3	0	1
CO 2	3	3	1	1	3	1	3	1	3	0	1
CO 3	3	3	2	1	3	1	3	1	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	>	✓
CO 2	✓	√	√	√	✓
CO 3	√	√	√	√	√

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours				
Course Code	MAT6EJ306					
Course Title	INTRODUCT	TION TO FOURIER ANAL	YSIS			
Type of Course	Elective					
Semester	VI					
Academic Level	300-399					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	4	-	60		
Pre-requisites	An introductor	y course in Real Analysis inc	luding series of	functions		
Course	Fourier analysi	s is a fundamental componen	t in the tool-kit	of every pure and		
Summary	applied mathe	matician with numerous app	plications to si	gnal processing,		
	image processi	ng, tomography and several o	ther areas of en	gineering. In this		
	course we shall	course we shall look at the most basic theoretical foundations of this subject.				
	Along the way	we shall have to recapitulate s	ome of the requ	isite results from		
	functional anal	ysis.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Demonstrate proficiency in defining and applying concepts related to inner product spaces, including orthogonality and linear operators.	Ap/An	Р	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam
CO2	Describe orthogonality, including definitions and examples. Demonstrate the use of orthogonal projections, including the Gram-Schmidt orthogonalization process.	Ap	С	Internal Exam/Assignment / Seminar/ Viva / End Sem Exam
CO3	Compute Fourier series on various intervals including cosine and sine expansions, and understand the complex form of Fourier series.	Ap	P	Internal Exam/Assignment /Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text Book		Course in Wavelets with Fourier Analysis, 2e, Albert Bogowich, Wiley.	gess and	l Francis
Module	Unit	Content	Hrs (48+ 12)	Marks Ext: 70
I		Inner Product Spaces	12)	
		Quick review through the preface of the text book for the discussions Fourier Analysis and Wavelets		
	1	0.1 and 0.2 – Motivation, definition and examples of inner product.		
	2	0.3 – The spaces LZ and ℓ Z – $0.3.1$ - Construction of inner products in LZ and ℓ Z .		
	3	0.3.2 – Convergence in LZ versus uniform convergence.		
	4	0.4 – Schwarz Inequality		
	5	0.4 - Triangle Inequality		
	6	0.5 – Orthogonality		
		0.5.1 – Definitions and examples.		
	7	0.5.2 – Orthogonal Projections – up to and including example 0.23		
II		Inner Product Spaces – contd.	12]
	8	0.5.2 – Orthogonal Projections – rest of the section		
	9	0.5.3 – Gram – Schmidt Orthogonalization.		
	10	0.6 – Linear Operators and their Adjoints		
		0.6.1- Linear Operators		
	11	0.6.2 – Adjoints - (up to and including Example 0.31)		
	12	0.6.2 – Adjoints – rest of the section.		

III		Fourier Series	12	
	13	1.1 – Introduction (1.1.1 to 1.1.3)		
	14	1.2 – Computation of Fourier Series		
		1.2.1 – On the interval $[-\pi, +\pi]$ – with examples		
	15	1.2.2 – Other intervals – with examples		
	16	1.2.3 – Cosine and Sine expansions with examples		
	17	1.2.5 – The complex form of Fourier Series		
		dules III and IV are presented only for motivations an		
		mples for the theory. All the proofs of theorems in thes lules are optional to study and exempted from externa		
		mination.		
IV		Fourier Transforms	12	
	18	2.1 – Informal development of the Fourier transform		
		2.1.1 – Fourier Inversion Theorem		
	19	2.2.2 – Fourier Transform of a convolution		
	20	2.2.3 – Adjoint of the Fourier Transform		
	21	2.2.4 – Plancherel Theorem		
	22	More problems from the above sections		
V (Open		Fourier Analysis	12	
Ended)	at the di Wavelet book). T reconstr which is	aving the above basics of Fourier Analysis, one can look screte versions of Fourier Analysis and can enter into its theory (for instance refer sections 4.1 and 4.2 of text. The Haar wavelet analysis with its decomposition and function theorems open the window to signal theory is an active area of research for both pure and applied naticians.		

References

- 1. Ten lectures on Wavelets, Daubechies, Philadelphia, SIAM, 1992.
- 2. Fourier Analysis and its Applications, Gerald B Folland, Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, California.
- 3. Introduction to Fourier Analysis on Euclidean Spaces, Elias M Stein and Guido -Weiss, Princeton University Press.
- 4. How to make Wavelets, Robert S. Strichartz, The American Mathematical Monthly.

Note: 1) Optional topics are exempted for end semester examination.

2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	1	3	1	3	0	1
CO 2	3	3	2	1	3	1	3	1	3	0	1
CO 3	3	3	2	1	3	1	3	1	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	√	>	✓
CO 2	✓	✓	√	√	✓
CO 3	√	√	√	√	√

Programme	B. Sc. Mathematic	B. Sc. Mathematics Honours								
Course Code	MAT8EJ401									
Course Title	ADVANCED TO	ADVANCED TOPOLOGY								
Type of Course	Elective									
Semester	VIII									
Academic Level	400-499									
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours						
		per week	per week							
	4	4	0	60						
Pre-requisites	1. Topology I									
Course	The advanced topo	ology course extends Topo	logy I by intro	oducing further						
Summary	concepts and tools	s. It starts with the produ	ct topology ar	nd explores its						
	properties. Embedo	dings, including the Tycho	noff embeddin	g theorem, are						
	discussed. Urysohr	n's Lemma from the previo	us course is us	ed to prove the						
	Urysohn Metrisation	on Theorem. Nets and filt	ers are introdu	ced to address						
	sequence limitation	ns. Various forms of compa	actness and con	mpactifications						
	are examined, with	a focus on their relation to o	completeness in	metric spaces.						
	The course conclu	des with important results	s such as the l	Baire category						
	theorems.									

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Learn basic structures and	U	F	Internal
	constructions in Topology			Exam/Assignment/
				Seminar/ Viva / End Sem
				Exam
CO2	Analyse and apply the concepts	An	P	Internal
	of Nets, Filters, and			Exam/Assignment/
	Convergence in the context of			Seminar/ Viva / End Sem
	Topological Spaces			Exam
CO3	To develop the student's ability	Ap	С	Internal
	to handle abstract ideas of			Exam/Assignment/
	mathematics and			Seminar/ Viva / End Sem
	mathematical proofs			Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text Book	Introduct Publishe	tion to General Topology, 2 nd Edition, K. D. Joshi, rs, 1983.	New Age In	nternational
Module	Unit	Content	Hrs (48+12)	External Marks (70)
I		Chapter 8: Products & Coproducts	10	
	1	Cartesian Products of Families of Sets – 8.1		
	2	The Product Topology – 8.2		
	3	Productive Properties – Separation Axioms 8.3		
	4	Productive Properties – Connectedness – 8.3		
	5	Countably Productive Properties – Metrisability–8.4		
	6	Countably Productive Properties – Countability–8.4		
	7	The Case of Separability – 8.4		
II		Chapter 9: Embedding & Metrisation	10	
	8	Evaluation Functions into Products – 9.1		
	9	Embedding Lemma – 9.2		
	10	Tychonoff Embedding – 9.2		
	11	The Urysohn Metrisation Theorem – 9.3]	
III		Chapter 10: Nets & Filters	12	
	12	Definition & Convergence of Nets – 10.1		
	13	Topology & Convergence of Nets – 10.2		
	14	Nets & Compactness – 10.2		
	15	Filters & Their Convergence – 10.3		
	16	Topology & Filters – 10.3		
	17	Ultrafilters and Compactness – 10.4		
IV	Chap 1	1,12: Compactness & Complete Metric Spaces	16	

	18	Variations of Compactness – 11.1		
	19	The Alexander Sub-base Theorem – 11.2		
	20 Local Compactness – 11.3			
	Compactifications – 11.4 (Wallman Compactification 11.15 to 11.20 may be relegated to Practicum)			
	22 Complete Metrics – 12.1			
	23 Consequences of Completeness – 12.2			
	24	Completions of a Metric – 12.4		
V	Practic	um:	12	
	1	Wallman Compactification: 11.15 to 11.20		
	2	12.3: Some Applications (of Completeness)		
	3	Chapter 13: Category Theory		
	4	Chapter 14: Uniform Spaces		
	5	Chapter 15 Section 2: Paracompactness		
	6	Chapter 15 Section 3: Use of Ordinal Numbers		
	7	Nagata-Smirnov Metrisation Theorem		

References

- 1. Topology, J. R. Munkres, Prentice Hall of India, 2000.
- 2. General Topology, S. Willard, Addison Wesley Pub. Company, 1976.
- 3. General Topology, J. L. Kelley, D. van Nostrand, 1955.
- 4. Introduction to Topology and Modern Analysis; G. F. Simmons, McGraw-Hill, 1963.
- 5. Topology, James Dugundji, Prentice Hall of India, 1975.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	1	2	1	3	0	1
CO 2	3	3	2	1	3	1	3	1	3	0	1
CO 3	3	3	3	3	2	1	2	1	2	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	>	>	✓
CO 2	√	√	√	✓	√
CO 3	√	√	√	√	√

Programme	B. Sc. Mathematics Honours								
Course Code	MAT8EJ402								
Course Title	PARTIAL DI	PARTIAL DIFFERENTIAL EQUATIONS							
Type of Course	Elective	Elective							
Semester	VIII	VIII							
Academic Level	400-499								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	1. Real Analysi Equations	is 2. Basic Concepts of Vector	or functions 2. (Ordinary Differential					
Course Summary	This introductory Partial Differential Equations (PDEs) course equips students with the mathematical tools and problem-solving skills necessary to analyse and solve real-world phenomena governed by PDEs. The syllabus focuses on analytical methods for solving first and second-order PDEs, laying the foundation for further exploration of advanced PDEs and their applications.								

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understanding of basic concepts, definitions, and mathematical problems related to first-order quasilinear equations.	U	С	Internal Exam/Assignmen t/ Seminar/ Viva / End Sem Exam
CO2	Analyse and evaluate the classification of second-order linear equations, including the Cauchy problem and wave equations.	An	E	Internal Exam/Assignmen t/ Seminar/ Viva / End Sem Exam
CO3	Evaluate solutions for boundary value problems and apply them in solving PDEs.	Е	Р	Internal Exam/Assignmen t/ Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text: Linear Partial Differential Equations for Scientists and Engineers, Fourth Edition, Tyn Myint-U, Lokenath Debnath, Birkhauser(2007), ISBN: 978-81-8489-079-2.

Module	Unit	Content	Hrs (48	Ext. Marks
			+12)	
I	I	First Order Quasilinear Equations and Method of Characteristics	9	
	1	Basic Concepts, definitions and mathematical problems		_
	2	Classification of first order equations		
	3	Construction of a first order equation		
	4	Geometrical Interpretation of a First- Order Equation		
	5	Method of characteristics and General solutions		
	Section	ons from Text: 1.2, 1.3, 2.1, 2.2,2.3, 2.4, 2.5.		
II	Cla	assification of Second Order Linear Equations, The Cauchy Problem and Wave Equations	21	
	6	Second order equations in two independent variables		
	7	Canonical Forms		
	8	Equations with constant coefficients		
	9	General Solutions		
	10	The Cauchy Problem		
	11	Homogeneous Wave Equations		
	12	Initial Boundary-Value Problems		
	13	Equations with Nonhomogeneous Boundary Conditions		
	14	Vibration of Finite String with Fixed Ends		
	15	Nonhomogeneous Wave Equations		
	16	The Riemann Method		

	Section	ons from Text: 4.1 - 4.4, 5.1, 5.3-5.8			
III		Method of Separation of Variables	13		
	17	Introduction			
	18	Separation of Variables			
	19	The Vibrating String Problem			
	20	Existence and Uniqueness of Solution of the Vibrating String Problem			
	21	The Heat Conduction Problem			
	22	Existence and Uniqueness of Solution of the Heat Conduction Problem			
	23	The Laplace and Beam Equations			
	24	Nonhomogeneous Problems			
	Section	ons from Text: 7.1-7.8			
IV	Boundary Value Problems and Applications				
	25	Boundary Value Problems			
	26	Maximum and Minimum Principles			
	27	Uniqueness and Continuity Theorems			
	28	Dirichlet Problem for a circle			
	29	Neumann Problem for a circle			
	30	Dirichlet Problem for a rectangle			
	31	The Neumann Problem for a Rectangle			
	Sections from Text: 9.1-9.4, 9.6, 9.7, 9.8,9.9				
V (Open Ended)	(Green's Functions, Boundary Value Problems and Nonlinear Equations	12		
		Green's Functions for Ordinary Differential Equations, Construction of Green's Functions, The Dirac Delta Function, Properties of Green's Functions, Method of Green's Functions (only for Laplace operator) Nonlinear PDEs -brief overview from any text			

References:

- 1. Partial Differential Equations -An Introduction, Second Edition, Walter A. Strauss, John Wiley and Sons Limited.
- 2. Partial Differential Equations-Classical Theory with a Modern Touch, A.K. Nandakumaran, P.S. Datti, Cambridge-IISc Series.
- 3. Elements of Partial Differential Equations, I.N. Sneddon, McGraw-Hill, New York (1972).

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	1	2	1	3	0	1
CO 2	3	3	2	1	3	1	3	1	3	0	1
CO 3	2	3	2	1	3	1	3	1	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	nt Seminar Viv		End Semester Examinations
CO 1	√	√	>	>	√
CO 2	✓	√	√	√	✓
CO 3	✓	√	√	√	✓

Programme	B.Sc. Mathemat	ics Honours						
Course Code	MAT8EJ403	MAT8EJ403						
Course Title	RINGS AND M	ODULES						
Type of Course	Elective							
Semester	VIII							
Academic	400-499							
Level								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Elementary nur	mber theory, algebra combin	natorics, basic l	inear algebra				
Course	This course is a self-contained elementary introduction to Rings and Modules.							
Summary	The course will a core course in	cover basic topics of Ring 7 Algebra	Theory and Mo	dule Theory which is				

CO	Statement Cognitive		Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Define and differentiate between various types of rings, including rings of continuous functions, matrix rings and polynomial rings	П	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Analyse and apply the concepts of ideals within rings, including definitions, maximal ideals, generators for subrings and ideals.	An	Ap	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Evaluate and synthesize the concepts of homomorphisms of rings, including quotient rings, ideals in quotient rings, endomorphism rings and field of fractions.	E	M	Internal Exam/Assignment/ Seminar/Viva/End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

[#] - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text book	Intro	duction to Rings and Modules, C. Musili, Narosa Publishing Hou	se, 200	l.
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70
I		Rings		
	1	Chapter 1 – Section 1.1: Terminology		
	2	Chapter 1 – Section 1.2: Rings of Continuous functions		
	3	Chapter 1 – Section 1.3 to 1.5: Matrix Rings, Polynomial Rings		
		and Power series rings	12	
		Chapter 1 – Section 1.8 to 1.9: Some Special Rings and Direct Products		
	5	Chapter 1 – Section 1.10 to 1.12: Several Variables, Opposite		
		rings, Characteristic of a ring		
II		Ideals		
	6	Chapter 2 – Section 2.1 to 2.2 : Definitions, Maximal Ideals		
	7	Chapter 2 – Section 2.3: Generators for subrings and Ideals	12	
	8	Chapter 2 – Section 2.4: Basic Properties of Ideals		
	9	Chapter 2 – Section 2.5: Algebra of Ideals		
III		Homomorphisms of Rings		
		Chapter 2 – Section 2.6 & 2.7 : Quotient rings and Ideals in Quotient rings		
		Chapter 3 – Section 3.1: Definition and Basic Properties		
		Chapter 3 – Section 3.2 : Fundamental Theorems of Homomorphisms	12	
		Chapter 3 – Section 3.3: Endomorphism Rings		
		Chapter 3 – Section 3.4: Field of Fractions		
		Chapter 3 – Section 3.5: Prime Fields		
IV		Modules		
	16	Chapter 5: Modules: Section 5.1: Definition and Examples		
	17	Chapter 5: Section 5.2 to 5.4: Direct sums, Free Modules and Vector spaces	12	
	18	Chapter 5: Section 5.4 to 5.3: Direct sums and Free Modules		
	19	Chapter 5: Section 5.6: Quotient Modules		
	20	Chapter 5: Section 5.7: Homomorphisms		
	21	Chapter 5: Section 5.8: Simple Modules		
V		Open Ended	12	
		ian Modules and Rings, Noetherian Modules and Rings, Nil cal, Jacobson Radical		
References	1.	John B. Fraleigh, A First Course in Abstract Algebra, 7th Edition 2002	n,	
		M. Artin: Algebra, Prentice Hall, 1991		
	3.	Thomas W. Hungerford, Algebra, Springer, 2003		
	4.	Joseph Gallian, Contemporary Abstract Algebra, 7th Edition, Ce Learning, 2009.	engage	
	5.	D.M. Burton, A First Course in rings and ideals, Addison-Wesle 1970.	ey,	

176

p

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	1	2	1	3	0	1
CO 2	2	3	2	1	3	1	3	1	3	0	1
CO 3	2	2	2	1	3	1	3	1	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	√	✓
CO 2	√	✓	√	✓	✓
CO 3	✓	✓	√	√	✓

Programme	B. Sc. Mathematics Honours								
Course Code	MAT8EJ404	MAT8EJ404							
Course Title	CODING THEO	RY							
Type of Course	Elective	Elective							
Semester	VIII								
Academic Level	400-499								
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	Linear Algebra, Alge	ebra							
Course Summary	The course helps the student to understand various algebraic codes, - their encoding and decoding methods and the mathematical tools used in their design.								

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Construct the parity check/generator	Ap	С	Internal
	atrix of a linear code.			xam/Assignment/
				eminar/ Viva / End
				em Exam
CO2	Calculate bounds on rate and	An	P	Internal
	istance of a given linear code using			xam/Assignment/
	arious bounds.			eminar/ Viva / End
				em Exam
CO3	Design cyclic codes of a given rate	Ap	P	Internal
	nd distance parameters and decode			xam/Assignment/
	t using various standard decoding			eminar/ Viva / End
	rocedures.			em Exam

⁻ Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive nowledge (M)

Text	Huffman, W. Cary, and Vera Pless. Fundamentals of error-correcting codes.				
	Cambridge university press, 2010.				
Module	Unit	Content	Hrs	External Marks	
			(48+12)	(70)	
I	I Linear Codes		12	(10)	
	Text Se 1.11.2	ections: 1.1, 1.2, 1.4, 1.5.1 to 1.5.3, 1.8, 1.10,			
	1	Binary and Prime Fields			
	2	Linear Codes - Generator and Parity Check Matrix			
	3	Weights and Distances]		
	4	Punchuring, Shortening and Extension]		
	5	Hamming Codes			
	6	Reed Muller Codes			
	7	Encoding Linear Codes			
II	Bounds	s on Linear Codes	5		
	Text Sections: 2.2, 2.4, 2.8				
	8	Plotkin Bound			
	9	Singleton Bound and MDS codes			
	10	Gilbert - Varshamov Lower Bound			
	11	Asymptotic Singleton and Plotkin Bounds			
III	III Finite Fields and Cyclic Codes		15		
	Text Sections: 3.1 to 3.7 and 4.1, 4.2, 4.5.				
	12	Finite fields and elementary properties			
	13	Polynomials and Euclid's Algorithm	_		
	14	Primitive Elements	_		
	15	Construction of Finite fields			

	16	6 Cyclotomic Polynomials			
	17	Basic Theory of Cyclic Codes	7		
	18 BCH Bound.				
IV	BCH and Reed Solomon Codes Text Sections: 5.1, 5.2, 5.3, 5.4.1 to 5.4.3		16		
	18	BCH Codes			
	19 Reed Solomon Codes and their generalization.				
	20	Peterson–Gorenstein–Zierler Decoding Algorithm			
	21	Berlekamp Massey Decoding Algorithm	1		
	22	Sugiyama Decoding Algorithm (Euclid's Algorithm)			
V	OPEN ENDED		12	-	
	1	List decoding and Guruswami Sudan Algorithm			
	2	Weight Distributions of Codes and McWilliams Identities			
	3	Self-dual codes.			
	4	Codes on Projective Planes			
	5	Codes over Z4			
	6	Convolutional Codes			
References	1. E. F. Assmus, Jr. and J. D. Key, Designs and Their Codes. London: Cambridge University Press, 1993.				
	2. R. E. Blahut, Theory and Practice of Error Control Codes. Reading, MA: Addison-Wesley, 1983.				

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	0	3	1	2	1	3	0	1
CO 2	3	2	2	0	3	1	3	1	3	0	1
CO 3	3	3	2	0	3	1	3	1	3	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	>	>	✓
CO 2	√	√	√	✓	√
CO 3	✓	✓	√	√	✓

Programme	B. Sc. Mathematic	es Honours						
Course Code	MAT8EJ405							
Course Title	FOUNDATIONS	OF MATHEMATICS						
Type of Course	Elective							
Semester	VIII							
Academic Level	400-499							
Course Details	Credit	Lecture/Tutorial	Practical	Total				
		per week	per week	Hours				
	4	4	-	60				
Pre-requisites	Nil							
Course	The course goes	into the philosophy of ma	athematics, mo	odern axiom				
Summary	methods, controve	methods, controversies in set theory around axiom of choice, its						
	implications and va	arious philosophical alterna	ative approache	es to the				
	foundations of mat	hematics.						

CO	Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse Axiomatic	An	С	Internal
	Systems and Logical			Exam/Assignment
	Deductions			/ Seminar/ Viva /
				End Sem Exam
CO2	Explore Axioms and their	Ap	С	Internal
	Interpretation of			Exam/Assignment
	Mathematical Structures			/ Seminar/ Viva /
				End Sem Exam
CO3	Investigate Properties of	Е	P	Internal
	standard sets in			Exam/Assignment
	Mathematics and obtain			/ Seminar/ Viva /
	their axiomatic			End Sem Exam
	constructions			

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	oduction to the Foundations of Mathematics (2/e), John Wi Content	Hrs	Ext. Marks
11104410			1115	
			(60)	(70)
I	Axioma	atic Method (Up to Chapter 3 Section 5 of Text Book) 12		
	1	Description - undefined terms, axioms, logical deductions and proofs. Case study with axioms of points and lines.		
	2	Axioms and Interpretation (models): consistency (satisfiability), completeness, categorically and independence.		
	3	Case Study with axioms of order and equivalence.		
	4 Se	and Russal's Paradox.		
	5	Finite and Infinite Sets,		
	6	Review of Mathematical Induction.		
II	Set The	eory: Cardinals (Chapter 3, Section 6 to Chapter 4 of Text	12	
	Book)			
	7	Infinite Sets - Ordinary and Dedekind Infinity and their equivalence		
	8	Axiom of Choice		
	9	Countable Sets and their properties		
	10	Diagonalization and Uncountable Sets, Irrational Numbers		
	11 Ca	rdinal Numbers and Bernstein's Equivalence Theorem		
	12	Well Ordered Sets and Transfinite Induction		
III	Set The	eory: Ordering (Chapter 5)	12	
	13	Well Ordering Theorem		
	14	Ordinals and Burali-Forti Paradox		
	15	Properties of Ordinals and Continuum Hypothesis		
	16	Equivalence of Axiom of Choice, Well Ordering Theorem.		
	17	Zorn's Lemma and Equivalence with Axiom of Choice		
IV	Real N	lumbers (Chapter 6 of Text Book)	12	1

	18	Ordering and Separability of Reals, and Dedekind Cuts.	
	19	Axiomatization of Real Numbers: Constituency, Independence and	
	20	Categoricalness of Real Number Axioms.	
	21	Definition of Real numbers from Peano's Axioms	
	22	Complex Numbers.	
V	Discus	sions in Mathematical Philosophy	
	1	Abstractions: Groups/Rings/Fields/Vector Spaces	
	2	Zermelo Fraenkel Axiomatization of Set Theory	
	3	Frege-Russell Thesis Set Theory using Predicate Calculus	
	4	Brower's Intuitionist Theory	
	5	Formal Deductions and Godel's Theorems.	

References:

- 1. I. M. Copi, Symbolic Logic (5/e), Pearson, 2015.
- 2. U. C. Merzbach and C. B. Boyer, A History of Mathematics, (3/e), 2011.
- 3. I. Stewart and D. Tall, The foundations of Mathe matics, (2/e), Oxford University Press 2015.

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	1	3	3	3	3	0	0	3
CO 2	3	3	2	1	3	3	3	3	0	0	3
CO 3	3	3	2	1	3	3	3	3	0	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	>	>	✓
CO 2	√	√	√	✓	√
CO 3	√	√	√	✓	√

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours							
Course Code	MAT8EJ406	MAT8EJ406							
Course Title OPE RATIONS RESEARCH									
Type of Course M	Type of Course Major								
Semester	VIII								
Academic Level	400-499								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	per week						
	4	4	-	60					
Pre-requisites	Basic Mathem	atical and Statistical knowled	lge.						
Course	This paper on	Operation Research introdu	ces the concept	ts like minimum					
Summary	path problem in network analysis, integer linear programming problem and								
	dynamic progr	dynamic programming problem. Kuhn Tucker condition to solve nonlinear							
	programming p	problem is also discussed.							

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Solve Minimum Path Problem, Maximum flow problem	Ap	С	Internal Exam/ Assignment / Seminar/ Viva / End Sem Exam
CO2	Understand and solve ILP and MILP	Ap	P	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Apply Kuhn-Tucker Conditions to solve nonlinear programming problem	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text: Optimization Methods in Operation Research and System Analysis (4th edition), KV Mittal, C Mohan, New Age International (P) Limited (2016)

Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
I		Flow and Potential in Networks	14	
	1	5.1,5.2 - Graphs Definitions and Notation		
	2	5.3- Minimum Path Problem		
	3	5.4- Spanning tree of minimum length		
	4	5.5- Problem of Potential Difference		
	5	5.6- Scheduling of sequential activities		
	6	5.7 Maximum flow problem		
	7	Generalized Problem of Maximum flow		
II		Integer Programming	10	
	8	6.1, 6.2-Introduction, ILP in two dimensional space		
	10	6.3-General ILP and MILP problems		
	11	6.4- Examples of ILP in two dimensional space		
	12	6.5,6.6, 6.7- Cutting planes, Example, Remarks on Cutting plane method		
III		Kuhn-Tucker Theory and Nonlinear Programming	11	
	14	8.1, 8.2-Introduction, Lagrangian Function: Saddle Point,		
	15	8.3- Relation between Saddle Point of $F(X,Y)$ and Minimal point of $f(X)$		
	16	8.4- Kuhn-Tucker Conditions		
	17	8.5- Primal and Dual Problems		
	18	8.6-Quadratic Programming		
IV		Dynamic Programming	13	
	19	10.1,10.2- Introduction, Problem 1: A Minimum Path Problem		

	20	10.3-Problem II: Single Additive Constraint, Additively Separable Return		
	21	10.4, 10.5-Problem III: Single Multiplicative Constraint, Additively Separable Return, Problem IV: Single Additive Constraint, Multiplicatively Separable Return		
	22	10.6,10.7-Computational Economy in DP, Serial Multistage Model		
	23	10.8, 10.9-Examples of Failure, Decomposition		
	24	10.10 - Backward and Forward Recursion		
V		Open Ended	12	
	Sensit variab Deleti progra			

References:

- 1. G. Hadley: Linear Programming Addison-Wesley Pub Co Reading, Mass (1975)
- 2. G. Hadley: Non-linear and Dynamic Programming Wiley Eastern Pub Co. Reading, Mass (1964)
- 3. S.S. Rao : Optimization Theory and Applications (2nd Edn.) Wiley Eastern (P) Ltd. New Delhi.
- 4. Russel L Ackoff and : Fundamentals of Operation Research Maurice W.Sasioni Wiley Eastern Ltd. New Delhi. (1991)

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	2	1	1	1	2	0	1
CO 2	3	3	1	1	2	1	1	1	2	0	1
CO 3	2	3	2	1	2	1	1	1	2	0	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	>	√
CO 2	✓	✓	√	√	✓
CO 3	√	√	√	√	√

Programme	B.Sc. Mathematics Honours							
Course Code	MAT8EJ407	MAT8EJ407						
Course Title	CRYPTOGRA	APHY						
Type of Course	Elective							
Semester VIII								
Academic Level	400-499							
Course Details	Credits	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	4	-	60				
Pre-requisites	Elementary nur	mber theory, algebra, combir	natorics, basic l	inear algebra				
Course Summary	creating secur unintelligible to mathematical con Classical Crypt into cryptanalyst Cryptographic I Students gain a	s a fundamental aspect of e communication by end to unauthorised users and oncepts. This course covers tography, which includes si sis of these systems. Moreov Hash Functions, focusing on comprehensive understanding with the knowledge and ski aphic systems.	coding messaged Cryptography a wide range of these conditions of these conditions of these conditions of these conditions of these conditions of these conditions of these conditions of these conditions of these conditions of these conditions of these conditions of these conditions of these conditions of these conditions of these conditions of these conditions of these conditions of these conditions of the	ges to make them y relies heavily on f topics, starting with stems. It also delves includes a section on nsuring data integrity. cepts and techniques,				

СО	Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Construct the parity check/generator matrix of a linear code. Design cyclic codes of a given rate and distance parameters.	Ар	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Calculate bounds on rate and distance of a given linear code using various bounds.	An	P	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Decode a cyclic code using various standard decoding procedures.	Ap	P	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook	Crypto	graphy Theory and Practice 3 rd Edition, Douglas R. Stinson, Chapman	ı & Hal	1,
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
I		Classical Cryptography		,
	1	Chapter 1: Section 1.1-1.1.1: Some SimpleCryptosystems, Shift	1	
		Cipher		
	2	Chapter 1: Sections 1.1.2 & 1.1.3: The SubstitutionCipher, Affine		
		Cipher	12	Min.15
	3	Chapter 1: Sections 1.1.4 & 1.1.5: The VigenereCipher, The Hill		
		Cipher		
	4	Chapter 1: Sections 1.1.6: The Permutation Cipher		
	5	Chapter 1: Sections 1.1.7: Stream Ciphers		
II		Cryptanalysis		
	6	Chapter 1: Section 1.2 & 1.2.1 : Cryptanalysis: Cryptanalysis of		
		the Affine Cipher	1	
	7	Chapter 1: Section 1.2.2: Cryptanalysis of the Substitution Cipher	10	3.51 4.5
	8	Chapter 1: Section 1.2.3 : Cryptanalysis of the Vigenere Cipher	12	Min.15
	9	Chapter 1: Section 1.2.4 : A known plain textattack on the Hill		
1.0	G1	Cipher	_	
10	Chapte	1: Section 1.2.5 : Cryptanalysis of the LFSR-based Stream		
111		Cipher.		
III	11	Shannon's Theory	-	
	11	Chapter 2 : Sections 2.1, 2.2 : Introduction, Elementary Probability		
	12	Theory Chapter 2 : Sections 2.3: Perfect Secrecy	10	Min.15
	13	Chapter 2 : Sections 2.3: Feffect Secrecy Chapter 2 : Sections 2.4: Entropy, HuffmanEncodings	10	WIIII.13
	14	Chapter 2 : Sections 2.4: Entropy, HuffmanEncodings Chapter 2 : Sections 2.5: Properties of Entropy	-	
	15	Chapter 2 : Sections 2.6: Spurious Keys andUnicity Distance	-	
	16	Chapter 2 : Sections 2.7: Product Cryptosystems	†	
IV	10	Block Ciphers and Advanced Encryption Standard		
1 1	17	Chapter 3: Sections 3.1 and 3.2: Introduction, Substitution -	1	
	1,	Permutation Networks		
	18	Chapter 3: Sections 3.3 (3.3.1 to 3.3.3): LinearCryptanalysis	14	Min.15
	19	Chapter 3: Sections 3.4: Differential Cryptanalysis		
	20	Chapter 3: Sections 3.5 (3.5.1,3.5.2): Data Encryption Standard	1	
		(DES), Description of DES, Analysis of DES		
V		Open Ended		
		Cryptographic Hash Functions	12	
References	Jeffre	ey Hoffstein: Jill Pipher, Joseph H. Silverman, An Introduction to		
		athematical Cryptography, Springer International Edition.		
	2. Ko	oblitz, N. (1994) A course in Number Theory and Cryptography, (Sec	ondEd.),
		oringer- Verlag		
	3. Ya	an, S. Y. (2003) Primality Testing and Integer Factorization in Public-I	Key	
		yptography, Springer		
		Deffs & H. Knebl: Introduction to Cryptography, Springer Verlag, 20		
		fred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone: Handb	ook of	
		oplied Cryptography, CRC Press, 1996.		
	6. W	illiam Stallings: Cryptography and Network Security Principles and		

Practice, Third Edition, Prentice-hall India, 2003.

- 7. D. Boneh and V. Shoup: A Graduate Course in Applied Cryptography (V 0.5)
- 8. J. Katz and Y. Lindell. *Introduction to Modern Cryptography* (2nd edition)

Note: 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	3	3	3	3	0	0	3
CO 2	3	3	1	1	3	3	3	3	0	0	3
CO 3	2	3	2	1	3	3	3	3	0	0	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	>	>	✓
CO 2	✓	✓	√	√	✓
CO 3	√	√	√	√	√

Programme B. Sc. Mathematics Honours									
Course Code	MAT8EJ408								
Course Title	INTRODUCTIO	INTRODUCTION TO FRACTALS							
Type of Course	Elective	Elective							
Semester	VIII	VIII							
Academic	400 - 499								
Level									
Course Details	Credit	Lecture/Tutorial	Practicum	Total					
		per week	per week	Hours					
	4	4	0	60					
Pre-requisites	1. Calculus								
	2. Geometry								
Course	This course equip	s students with a thorou	igh understandin	g of metric					
Summary	spaces and the ma	thematical foundations o	f fractal geometr	ry, blending					
	theoretical insights	s with practical application	ns.						

CO	Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the basic concepts to build fractals	U	С	Internal Examination/ Assignment/ End Sem examination
CO2	Interpret the dimension of fractals	An	Р	Internal Examination/Seminar/ Assignment/ Report/ End Sem examination
CO3	To understand how to construct fractals and apply them	Ap	М	Internal Examination/Seminar/ Report/ End Sem examination

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text Book	Fract	als Everywhere, (2/e), Michael F Barnsley, Dover Public	cations, 201	2
Module	Unit	Content	Hrs (48+12)	External Marks(70)
I		Metric spaces	15	18
	1	Chapter II, Section 2:- Metric spaces		
	2	Section 3: - Cauchy Sequences, Limit Points, Closed		
		Sets, Perfect Sets, and Complete Metric Spaces		
	3	Section 4: - Compact Sets, Bounded Sets, Open		
		Sets, and Boundaries		
	4	Section 5: - Connected Sets, Disconnected Sets,		
		andPathwise-Connected Sets		
II		Space of Fractals	15	17
	5	Section 6: - The Metric Space (H(X), h): The		
		SpaceWhere Fractals Live	_	
	6	Section 7: - The Completeness of the Space of		
	7	Fractals – up to Theorem 7.1	_	
	7	Section 7: - The Completeness of the Space of		
	8	Fractals – From Theorem 7.1 onwards.	1	
	0	Chapter III, Section 1 – Transformations on the Realline – up to definition 1.3		
	9	Section 1: – Transformations on the Real line –	1	
		from definition 1.3 onwards.		
	10	Section 2: – Affine Transformations in the	1	
	10	Euclidean Plane		
	11	Section 6: – The Contraction Mapping Theorem	-	
III		Fractal Dimension	8	18
	12: -	Section 7: - Contraction Mappings on the		
		e of Fractals - up to definition 7.1		
	13: -	Section 7: – Contraction Mappings on the Space of		
	Fract	als – from definition 7.1 onwards		
	14: -	Section 8: – Two Algorithms for Computing Fractals		
		Iterated Function Systems	_	
		Section 10: – How to Make Fractal Models with the		
		of the Collage Theorem.	_	
		Chapter V, Section 1: – Fractal Dimension – up to		
		rem 1.2		
		Chapter V, Section 1: – Fractal Dimension – from		
IV	Theo	rem 1.2 onwards. Determination of Dimensions	10	17
1 4	18	Section 2: – The Theoretical Determination of the	10	1/
	10	Fractal Dimension – up to Theorem 2.1(including)		
	19	Section 2: – The Theoretical Determination of	1	
		theFractal Dimension – rest of the section.		
	20	Section 3: – The Experimental Determination of the		
		Fractal Dimension.		
	21	Section 4: – The Hausdorff-Besicovitch Fractal	1	
		Dimension – up to and including Theorem 4.2		

	22 Section 4:– The Hausdorff-		
	Besicovitch Fractal Dimension –		
	rest of the section		
\mathbf{V}	OPEN ENDED	12	
	Applications of Fractal functions, Fractal interpolation		
	functions, Space filling curves, Construction of Iterated		
	function systems, Applications of Fractals in medical		
	imaging		
References	1. The Fractal Geometry of Nature, Benoît B.		
	Mandelbrot, W.H. Freeman and Company, 1982.		
	2. Chaos and Fractals: New Frontiers of Science, (2/e),		
	Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar		
	Saupe, Springer, 2004		
	3. Fractals: Form, Chance, and Dimension, Benoît B.		
	Mandelbrot, W.H. Freeman and Company, 1977.		
	4. Fractals Everywhere, (2/e), Michael F. Barnsley,		
	Academic Press, 1993.		
	5. An Introduction to Fractals and Chaos, Michael F.		
	Barnsley, Cambridge University Press, 2021.		

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	2	1	2	2	2	1	1
CO 2	3	3	1	1	2	1	2	2	2	1	1
CO 3	3	2	2	1	2	1	2	2	2	1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	>	✓
CO 2	✓	√	√	✓	✓
CO 3	√	√	√	√	√

RESEARCH METHODOLOGY

Programme B. Sc. M thematics Honours							
Course Code	MAT8CJ489						
Course Title	RESEARCH METHO	RESEARCH METHODOLOGY IN MATHEMATICS					
Type of Course	Major	Major					
Semester	VII						
Academic Level	400–499	400–499					
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Mathematical Logic Research Aptitude	and necessary exposure to s	et theory.				
Course Summary	MAT8CJ489, "Research Methodology in Mathematics," is designed to equip students with the essential skills and knowledge required for conducting research in mathematics effectively. This course focuses on various aspects of mathematical research, including axiomatic set theory, writing mathematics, researching and presenting findings, and using LaTeX for mathematical typesetting. Additionally, students explore open-ended research topics, allowing them to delve into specific areas of interest within mathematics. Throughout the course, students engage with key texts and resources, enabling them to develop a comprehensive understanding of research methodologies in mathematics.						

CO	Statement Cognitive		Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Set Theory and Mathematical Writing: Students will demonstrate proficiency in axiomatic set theory, including concepts such as relations, functions, and Peano axioms. Students will exhibit competence in mathematical writing.			Internal Examination/ Assignment/ End Sem examination
CO2	Research Skills and Presentation Techniques: Students will acquire research skills, including identifying research topics. Students will develop effective presentation techniques, giving talks.			Internal examination/ Seminar/ Assignment/ End Sem examination
CO3	Mathematical typesetting: to use LaTeX to create and typeset documents. Beamer Presentations and PSTricks also included.			Internal Examination/S eminar/ Assignment/En d Sem examination

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text Book	(1): Naive set theory: Paul R. Halmos, Courier Dover Publications, 2017. (2): A student's guide to the study, practice, and tools of modern mathematics,					
	` '	Id Bindner and Martin Erickson. CRC Press, ISBN: 978-2		•		
Module	Unit	Content	Hrs	External		
			(48+12)	Marks		
				(70)		
I		Axiomatic Set Theory	12	_		
		(Sections 1 to 12 from the Text 1.)				
		1: The axiom of extension				
		2: The axiom of specification				
		3: Unordered pairs				
		4: Unions and intersections				
		5: Complements and powers				
		7: Relations				
		8: Functions				
		9: Families				
		10: Inverses and composites				
		11: Numbers				
		12: The Peano axioms				
II		Writing Mathematics (Text 2)	12			
		Chapter 1: How to Learn Mathematics				
		(A quick review – not part of evaluation)				
		Chapter 2: How to Write Mathematics -		-		
		2.1: What is the goal of mathematical writing?				
		2.2: General principles of mathematical writing				
		2.3: Writing mathematical sentences				
		2.4: Avoiding error				

	2.5: Writing mathematical solutions and proofs		
	2.6: Writing longer mathematical works		
	2.7: The revision process		
III	Researching and Presenting	12	
	(Text 2)		
	Chapter 3: How to Research Mathematics -		-
	3.1: What is mathematical research?		
	3.2: Finding a research topic		
	3.3: General advice		
	3.4: Taking basic steps		
	3.5: Fixing common problems		
	3.6: Using computer resources		
	3.7: Practicing good mathematical judgment		
	Chapter 4: How to Present Mathematics -		
	4.1: Why give a presentation of mathematics?		
	4.2: Preparing your talk		
	4.3: DOs and DON'Ts		
	4.4: Using technology		
	4.5 : Answering questions		
	4.6: Publishing your research		
IV	LATEX	12	
	(Text 2)		
	LaTeX		
	9.4 How to create and typeset a simple LATEX document		
	9.5 How to add basic information to your document		
	9.6 How to do elementary mathematical typesetting		
	9.7 How to do advanced mathematical typesetting		
	9.8 How to use graphics		
	PsTricks		1

10.1 What is PSTricks? 10.2 How to make simple pictures 10.3 How to plot functions 10.4 How to make pictures with nodes Beamer 11.1 What is Beamer? 11.2 How to think in terms of frames 11.3 How to set up a Beamer document 11.4 How to enhance a Beamer presentation		
10.4 How to make pictures with nodes Beamer 11.1 What is Beamer? 11.2 How to think in terms of frames 11.3 How to set up a Beamer document		
Beamer 11.1 What is Beamer? 11.2 How to think in terms of frames 11.3 How to set up a Beamer document		
11.1 What is Beamer?11.2 How to think in terms of frames11.3 How to set up a Beamer document		
11.2 How to think in terms of frames 11.3 How to set up a Beamer document		
11.3 How to set up a Beamer document		
<u> </u>		
OPEN ENDED	12	
OI EN ENDED		
(General Mathematical Research)		
Lecturer's choices from the following Reference 1 (Princeton Companion), Section 1.4: General Goals of Mathematical Research, p.48 to 78.		
 Solving Equations Classifying Generalizing Discovering Patterns Explaining Apparent Coincidences Counting and Measuring Determining Whether Different Mathematical Properties are Compatible Working with Arguments that are not Fully Rigorous Finding Explicit Proofs and Algorithms What do you find in a Mathematical Paper? 		
Reference 2 (Math Unlimited), any chapters of the lecturer's choices.		
Reference 3 (Krantz, Mathematical Writing), any topics of lecturer's choice.		
	(General Mathematical Research) Lecturer's choices from the following Reference 1 (Princeton Companion), Section 1.4: General Goals of Mathematical Research, p.48 to 78. 1. Solving Equations 2. Classifying 3. Generalizing 4. Discovering Patterns 5. Explaining Apparent Coincidences 6. Counting and Measuring 7. Determining Whether Different Mathematical Properties are Compatible 8. Working with Arguments that are not Fully Rigorous 9. Finding Explicit Proofs and Algorithms 10. What do you find in a Mathematical Paper? Reference 2 (Math Unlimited), any chapters of the lecturer's choices.	(General Mathematical Research) Lecturer's choices from the following Reference 1 (Princeton Companion), Section 1.4: General Goals of Mathematical Research, p.48 to 78. 1. Solving Equations 2. Classifying 3. Generalizing 4. Discovering Patterns 5. Explaining Apparent Coincidences 6. Counting and Measuring 7. Determining Whether Different Mathematical Properties are Compatible 8. Working with Arguments that are not Fully Rigorous 9. Finding Explicit Proofs and Algorithms 10. What do you find in a Mathematical Paper? Reference 2 (Math Unlimited), any chapters of the lecturer's choices.

MULTI-DISCIPLINARY COURSES (MDC)

Programme	B. Sc. Mathematics Honours						
Course Code	MAT1FM105(1)						
Course Title	MATRICES AND BASICS OF PROBABILITY THEORY						
Type of Course	MDC	MDC					
Semester	I						
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total			
		per week	per week	Hours			
	3	3	-	45			
Pre-requisites	Basic Arithmet	ic and Computational Skil	1.				
Course	The course "Matric	es and Basics of Probabilit	y Theory" prov	ides students			
Summary	with a comprehens	sive understanding of two	fundamental r	nathematical			
	concepts: matrices	and probability. The sylla	abus begins wit	h a focus on			
	_	ices, covering operations s					
	=	erminants, and inverses,		_			
		equations. Transitioning to		•			
		concepts, conditional pro	•				
	_	es, and various counting		•			
		basic statistics, including					
	measures of centra	l tendency and variation, a	nd measures of	position.			

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand the concepts			Internal
	of matrices and		_	Exam/Assignment
	determinants.	U	C	/ Seminar/ Viva /
				End Sem Exam
CO2	Apply matrix theory to			Internal
	solve systems of			Exam/Assignment
	equations.	Ap	P	/ Seminar/ Viva /
				End Sem Exam
CO3	Understand concepts like			Internal
	measures of central			Exam/Assignment
	tendency, measures of	U	C	/ Seminar/ Viva /
	variation, measures of			End Sem Exam
	position and probability.			

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Texts:

- 1. John Bird, Bird's Higher Engineering Mathematics 9/e, Routledge, ISBN: 978-0-367-64373-7, 2021.
- 2. Ron Larson & Betsy Farber, Elementary Statistics, Picturing the World 6/e, Pearson Education, ISBN: 978-0-321-91121-6, 2015.

Module	Unit	Content	Hrs	Ext. Marks
			(36+ 9)	(50)
I		Algebra of Matrices (from text 1)		
	1	Section 20.1 - Matrix notation		
	2	Section 20.2 - Addition, subtraction and multiplication of matrices		
	3	Section 20.3 to 20.4 - The unit matrix, The determinant of a 2 by 2 matrix.	9	Min 10
	4	Section 20.5 - The inverse or reciprocal of a 2 by 2 matrix.		
	5	Section 20.6 - The determinant of a 3 by 3 matrix		
	6	Section 20.7 - The inverse or reciprocal of a 3 by 3 matrix		
II		System of Equations From Text 1		
	7	Section 21.1 - Solution of simultaneous equations by matrices		
	8	8 Section 21.2 - Solution of simultaneous equations by determinants		Min 10
	9	Section 21.3 - Solution of simultaneous equations using Cramer's rule		
	10	Section 21.4 - Solution of simultaneous equations using the Gaussian elimination method.		
III		Basic Statistics From Text 2		
	11	Section 1.1 to 1.2 - An Overview of Statistics, Data Classification		

	12	Section 2.1 - Frequency Distributions and their Graphs		Min 10
	13	Section 2.3 - Measures of Central Tendency		
	14	Section 2.4 - Measures of Variation		
	15	Section 2.5 - Measures of Position		
IV		Basics of Probability (from text 2)		
	Section 3.1 - Basic Concepts of Probability and Counting.		9	Min 10
	17	Section 3.2 - Conditional Probability and the Multiplication Rule.		
	18	Section 3.3 - The Addition Rule.		
	19	Section 3.4 - Additional topics in probability and counting.		
V		Open Ended		
		Collection and Experimental Design, More Graphs Displays (for instance refer sections from Text 2: 1.3 .2)	9	

References:

- 1. Advanced engineering mathematics, 10/e, Erwin Kreyszig, Wiley, 2011.
- 2. Introduction to Linear Algebra with Applications, Jim DeFranza and Daniel Gagliardi, Waveland Press, 2015.
- 3. Elementary Statistics, 13/e, Mario F. Triola, Pearson Education, 2018.
- 4. Elementary Statistics, 8/e, Neil A. Weiss, Pearson Education, 2012.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	0	3	1	3	2	2	1	2
CO 2	3	0	3	1	3	2	3	1	2
CO 3	3	0	3	1	2	2	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	✓	√	√	✓	✓
CO 2	√	✓	√	√	✓
CO 3	√	√	√	√	✓

Programme	B. Sc. Mathematics Honours						
Course Code	MAT2FM106(1)						
Course Title	GRAPH THEOR	Y AND LPP					
Type of Course	MDC						
Semester	II						
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total			
		per week per w					
	3	3	-	45			
Pre-requisites	Basic Arithmetic a	nd Geometry.					
Course	The course "Gra	ph Theory and Linear	Programming'	' introduces			
Summary	fundamental conc	epts in graph theory fo	cusing initiall	y on graph			
	definitions, proper	ties, and structures such as	vertex degrees	s, subgraphs,			
	paths, and cycles.	The discussion extends to tre	ees, bridges, sp	anning trees,			
	·	connectivity, emphasizing	_	•			
	-	roviding proofs for brevit	~	•			
	1	course employs graphical		_			
	inequalities and optimization problems, progressing to the simplex						
		method for more complex maximization and minimization problems,					
	1	including duality and nonstandard scenarios. Additionally, the syllabus					
	-	exploration into graph mo	odellingmixtur	e, matrix			
	representations, an	d connector problems.					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Understand and apply the			Internal
	fundamental concepts in			Exam/Assignment
	graph theory.	U	С	/ Seminar/ Viva /
				End Sem Exam
CO2	Analyse properties of			Internal
	graphs and trees.			Exam/Assignment
		An	P	/ Seminar/ Viva /
				End Sem Exam
CO3	Solve linear programming			Internal
	problems by geometrically			Exam/Assignment
	and Simplex method.	Ap	С	/ Seminar/ Viva /
				End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Texts:

- 1. John Clark & Derek Allan Holton, A First Look at Graph Theory: Allied Publishers, First Indian Reprint 1995.
- 2. Margaret L. Lial, Raymond N, Finite Mathematics and Calculus with Applications 9/e, Greenwell & Nathan P. Ritchey Pearson Education, Inc, ISBN 0-321-74908-1, 2012.

Module	Unit	Content		Ext. Marks
I		Basics of Graph Theory		
		(from text 1)		
	1	Section 1.1 - Definition of a graph.		
	2	Section 1.3 - More definitions.	0	M: 10
	3	Section 1.4 - Vertex degrees.	9	Min 10
	4	Section 1.5 - Sub Graphs.		
	5	Section 1.6 - Paths and Cycles (Theorem 1.4 statement only).		
II		Basics of Graph Theory		
	6	From Text 1 Section 2.1 - Definitions and Simple Properties of trees (Proof of Theorem 2.1, 2.2 and 2.4 omitted).		
	7	7 Section 2.2 - Bridges: up to and including Theorem 2.8 (Theorem 2.6 and 2.7 are statement only).		N/2 10
	8	Section 2.2 - Bridges (Theorem 2.9 statement only) contd.	9	Min 10
	9	Section 2.3 - Spanning trees (Theorem 2.12 statement only).		
10	Section	2.6 - Cut Vertices and Connectivity (Theorem2.20 and Theorem 2.21 are statements only).		
III		Linear Programming - The Graphical Method From Text 2		
	11	Section 3.1 - Graphing Linear Inequalities.		
	12	Section 3.2 - Solving Linear Programming Problems Graphically; up to and including Example 2.	9	Min 10
	13	Section 3.2 - Solving Linear Programming Problems Graphically contd.		

	14	Section 3.3 - Applications of Linear Programming; up to and including Example 2.			
	15	Section 3.3 - Applications of Linear Programming contd.			
IV		Linear Programming - The Simplex Method			
		(from text 2)			
	16	Section 4.1- Slack Variables and the Pivot.			
	17	Section 4.2- Maximization Problems.	9	Min 10	
	18	Section 4.3- Minimization Problems; Duality.			
	19	Section 4.4- Nonstandard Problems.			
V		Open Ended			
	Graphs as models, Matrix representation of graphs, Connector problems (for instance refer sections from 1.2, 1.7 and 2.4 of Text 1).				

References:

- 1. Introduction to Graph Theory, 4th ed., R.J. Wilson, LPE, Pearson Education, 1996.
- 2. Graph Theory with Applications, J.A. Bondy & U.S.R. Murty, North-Holland, 1982
- 3. Linear Programming: Foundations and Extensions, 2/e, Robert J. Vanderbei, Springer Science+Business Media LLC, 2001.
- 4. An Introduction to Linear Programming and Game Theory (3/e), Paul R. Thie and G.
- E. Keough, John Wiley and Sons, 2008.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	2	3	1	2
CO 2	3	2	3	1	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	>	>	✓
CO 2	√	√	√	✓	✓
CO 3	✓	√	√	√	✓

Programme	B. Sc. Mathematics Honours						
Course Code	MAT1FM105(2)						
Course Title	MATHEMATICS	MATHEMATICS FOR COMPETITIVE EXAMINATIONS - PART I					
Type of Course	MDC						
Semester	I						
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	3	3	-	45			
Pre-requisites	Basic Arithmetic and Computational Skill						
Course	The course is designed to equip students with essential arithmetic and						
Summary	Summary problem-solving skills required for competitive exams. It covers top			covers topics			
ranging from fundamental arithmetic operations such as number s			mber systems,				
	fractions, and roots	and roots to more advanced concepts like financial mathematics,					
	time-speed-distanc	e calculations, and problem	n-solving techn	iques			

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Apply mathematical methods to solve problems	Ap	P	Internal Exam/Assignment/ Seminar/ Viva / End
				Sem Exam
CO2	Apply numerical skills in competitive examinations	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Manage time in competitive examinations.	С	M	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs	Ext. Marks
			(36+ 9)	(50)
_		Fundamentals of Arithmetic		
I	1	Number System		
	2	Number Series		
	3	Simple and Decimal Fractions	9	Min 10
	4	HCF and LCM		
	5	Square root and Cube root		
II		Basic Arithmetic Operations		
	6	Simplification		
	7	Average	9	Min 10
	8	Ratio and Proportion		WIIII 10
	9	Problems based on ages		
	10	Percentage		
III		Financial Mathematics		
	11	Profit and Loss		
	12	Discount		35. 40
	13	Simple Interest	9	Min 10
	14	Compound Interest		
	15	Work and Time		
IV		Time, Speed, and Distance		
	16	Speed, Time and Distance		
	17	Problems based on trains	9	Min 10
	18	Boats and Streams		
	19	Clock and Calendar		

V	Open Ended	9	
	Mixture or Allegation, Partnership, Pipes and Cisterns		

References: 1. Fast Track Objective Arithmetic, Rajesh Verma, Arihant Publications India limited, 2018 (Primary Reference).

- 2. Objective Arithmetic for Competitive Examinations, Dinesh Khattar, Pearson Education, 2020.
- 3. Quicker Objective Arithmetic, Dr Lal, Jain, Upkar's publication, 2010.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	0	3	2	3	2	3	1	2
CO 2	2	0	3	1	3	2	3	1	2
CO 3	2	0	2	2	2	2	2	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	>	√
CO 2	√	√	√	✓	✓
CO 3	√	√	√	√	√

Programme	B. Sc. Mathematics Honours				
Course Code	MAT2FM106(2)				
Course Title	MATHEMATICS	S FOR COMPETITIVE E	XAMINATI(ONS - PART II	
Type of Course	MDC				
Semester	II				
Academic Level	100 - 199				
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours	
		per week	per week		
	3	3	-	45	
Pre-requisites	Basic Arithmetic and Computational Skill				
Course	The course "Mathematics for Competitive Examinations - Part II" is designed				
Summary	to prepare students for competitive exams by focusing on various reasoning				
	and problem-solving skills. It covers a range of topics including non-verbal				
	reasoning, verbal r	easoning, spatial reasoning	g, and abstract	reasoning, each	
	module addressing	different aspects of these s	kill sets.		

CO	Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Apply mathematical			Internal
	methods to solve problems	Ap	P	Exam/Assignment/ Seminar/ Viva / End
	Understand the basic			Sem Exam Internal
CO2	concepts of logical reasoning Skills	U	P	Exam/Assignment/ Seminar/ Viva / End
				Sem Exam
CO3	Manage time in competitive examinations	C	M	Internal Exam/Assignment/
				Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

 $[\]label{eq:constraint} \mbox{\#-Factual Knowledge(F) Conceptual Knowledge(C) Procedural Knowledge(P) Metacognitive Knowledge(M)}$

Module	Unit	Content	Hrs	Ex
			(36+	Marks
			9)	(50)
I	1	Non-Verbal Reasoning		
1	2	Similarity of Pairs What come Next		
			9	Min 10
	3	Odd One out		
	4	Coding and Decoding		
	5	Ranking Test		
II		Reasoning Contd.		
	6	Blood relations		
	7	Blood relations Contd.	9	35. 40
	8	Direction Sense Test		Min 10
	9	Direction Sense Test contd.		
	10	Logical Venn Diagram		
III		Spatial Reasoning		
	11	Figure analogy		
	12	Figure series	9	Min 10
	13	Figure Classification		
	14	Mirror and Water Images		
	15	Counting of figures		
IV		Abstract Reasoning		
	16	Cube and Dice		
	17	Logical and Analytical Reasoning	9	Min 10
	18	Geometry mensuration		
	19	Data Interpretation		
V		Open Ended		

Alphabet and Number Sequence Test, Paper folding and paper cutting 9

References:

- 1. A Fast Track Course in MENTAL ABILITY, Amogh Goel, Arihant Publications India limited, 2016. (Primary Reference).
- 2. The Mental Ability, Logical Reasoning & Problem-Solving Compendium for IAS Prelims General Studies Paper 2 & State PSC Exams, Disha Experts, Disha Publications, 2018.
- 3. The Pearson Guide to Verbal Ability and Logical Reasoning for the CAT, Nishit K. Sinha, Pearson Education, 2014.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	2	1	2	0	1	1	0
CO 2	2	0	2	1	2	0	1	1	0
CO 3	0	1	2	1	2	0	1	1	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	>	>	✓
CO 2	✓	✓	√	√	✓
CO 3	√	√	√	√	✓

SKILL ENHANCEMENT COURSES (SEC)

Programme	B. Sc. Mathematics Honours				
Course Title	MATHEMATICA	AL TYPE SETTING SYS	TEM - LATE	X	
Course Code	MAT5FS112				
Type of Course	SEC				
Semester	V				
Academic Level	300-399				
Course Details	Credit	Lecture/Tutorial	Practical	Total	
		_		Hours	
		per week	per week		
	3	3	-	45	
Pre-requisites	1. Fundamental Ma	thematics Concepts	l		
Course	The course will co	The course will cover topics such as document formatting, mathematical			
Summary	typesetting, graphics and tables, bibliography management, beamer				
	presentation and u	presentation and understanding the Indian language transliteration			
	package for typeset	tting Sanskrit or Hindi or M	Ialayalam using	g LaTeX.	

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Preparing a LaTex document with title page including contents, references and index	Ap	С	Internal Exam/ Assignment/ Seminar/ Viva / End Sem Exam
CO2	To Display documents with bullets, numbering and aligning or ordering and adding rows and tables	Ap	С	Internal Exam/ Assignment/ Seminar/ Viva / End Sem Exam
CO3	Use mathematical typesetting and equation environments to create professional looking equations and mathematical notation	U	F	Internal Exam/ Assignment/ Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)
- Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)
Metacognitive Knowledge (M)

Textbook		: LATEX TUTORIAL, A PRIMER by Indian TEX Use Krishnan, 2003.	ers Grou	ıp, Edited	
		Text 2: George Gratzer, More Math Into LaTeX-Springer 2016 (5 th Edition),			
Module	Unit	Hrs	Ex.		
			(36+	Marks	
			9)	(50)	
I		Getting Started with LaTeX (Text-1)			
	1	The basics- Tutorial I			
	2	The documents – Tutorial II	8	Min 10	
	3	Bibliographic Database- Tutorial III & IV			
	4	Table of contents and Index- Tutorial V (Omit glossary)			
II		Styling Pages			
	5	Displayed Text – Tutorial VI	6	Min 10	
	6	Rows and columns – Tutorial VII		17111 10	
	7	Tables – Tutorial VII.2			
III		Typesetting Mathematics			
	8	Basic Mathematical equation- Tutorial VIII.1, VIII.2			
	9	Groups of Equations and numbering – Tutorial VIII.3			
	10	Matrices, dots, delimiters and affixing symbols- Tutorial VIII.4	10	Min 10	
	11	Operators, Equations, Symbols, notations, Greek letters etc. Tutorial VIII.5, VIII.6, VIII.7, VIII.8(In VIII.8 focus only on usual symbols, Greek letters, operations etc. commonly used in mathematics)			
IV		Theorems, figures, Cross references and Presentation(Text-1 and 2)			
	12	Theorem in Latex – Tutorial IX.1			
	13	The AMS theorem package- Tutorial IX.2 (Omit IX.2.2, IX.2.3)	12	Min 10	
	14	Boxes – Tutorial X (Section X.1 , X.2 Only)			

	15	Floating Images- Tutorial XI (Section XI.I.I, XI.I.2 and XI.I.5 Only)		
	16	Cross Reference – Tutorial XII (Section XII.1, XII.2 Only)		
	17	Footnotes- Tutorial XIII (Section XIII.1 Only)		
	18	Presentation – Text 2, Section 12.1 to 12.2.4		
	19	Presentation – Text 2, Section 12.2.6 to 12.2.9 (Omit 12.2.5 and 12.2.7)		
V		Open Ended	9	
	1	Installation of LaTeX		
	2	Familiarising Overleaf Platform		
	3	Write a chapter in a book that you are studying in any semester having mathematical symbol theorems and figures.		
	4	Create Slides with beamers and posters		
	5	Transliteration symbols with Illustrative examples of the Indian Languages, such as Sanskrit, Hindi (Devanagari) and Malayalam.		

References:

- 1) Tobias Oetiker, Hubert Partl, Irene Hyna and Elisabeth Schlegl, The Not So Short Introduction to LATEX 2ε (Online Link:- <u>The Not So Short Introduction to LaTeX</u> (oetiker.ch))
- 2) Harvey J. Greenberg, A simplified introduction to LaTeX (Online version)
- 3) Leslie Lamport (second edition. Addison Wiley,1994)- LaTeX, a Document Preparation System.
- 4) Donald Knuth (Addison-Wesley, 1984), The TeX book
- 5) Frank Mittelbach and Michel Goossens (second edition), Addison-Wesley, 2004).

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	0	1	1	2	2	1	0	2	3	0
CO 2	2	3	1	0	1	1	1	3	1	0	2	3	0
CO 3	3	2	1	0	1	1	2	1	1	0	2	2	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	✓	✓
CO 2	✓	√	√	√	✓
CO 3	√	√	√	√	✓

Programme	B. Sc. Mathematic	B. Sc. Mathematics Honours			
Course Code	MAT6FS113				
Course Title	DATA SCIENCE	WITH PYT	HON		
Type of Course	SEC				
Semester	VI				
Academic Level	300 - 399				
Course Details	Credit	Lecture per week	Tutorial per week	Practical per week	Total Hours
	3	3	-	0	60
Pre-requisites		A basic course in Python programming with the understanding of using looping, conditionals, creating variables, writing functions, and importing modules.			
Course Summary	Python. It will ena specific focus on h	This course is an advanced course for those who have learned the basics of Python. It will enable the students to learn more features of Python with a specific focus on how to use them to analyse data and arrive at conclusions in practical situations with the help of a reasonable knowledge of statistics.			

COC	Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Learn to rearrange and manipulate various data structures in Python to make it more meaningful	U	F	Internal Exam/ Assignments / End Semester Examination
CO2	Understand fundamentals of Statistics from a real life point of view	U	F	Internal Exam/ Assignments / Quiz / End Semester Examination
CO3	Learn how to visualise data for clearer understanding of practical situations	Ap	С	Internal Exam / Quiz / End Semester Examination

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Note: Python IDLE (with necessary modules like pandas, scipy), Anaconda/Spyder package, Jupyter notebook interface or Google colab (free to use) interface, Pydroid 3 for android (along with Pydroid repository plugin) can be used for training purposes. Python version 3.10 or above should be used to avoid errors with some of the functionalities we discuss in the course.

Textbook 1	Mastering Python for Data Science, Samir Madhavan, PACKT Publishing, 2015 2 Data Science from Scratch, Second Edition ,Joel Grus, O'Reilly, 2019			
Module	Unit	Content	Hrs (36+ 9)	Ext. Marks
	Pyth	on Tools for Handling and Manipulating Data		
		(Text 2, Chapter 2)		
	1	Exceptions, Lists.		
	2	Tuples, Dictionaries.		
I	3	Counters, Sets, List Comprehensions,	8	Min 10
	4	Truthiness, Automated Testing and assert Iterables and Generators		
	5	Randomness, Regular Expressions, zip and Argument Unpacking		
	More	Tools for Data Handling – Numpy and Pandas	8	Min 10
		(Text 1, Chapter 1)		
II	6	NumPy: Mathematical operations, Array subtraction, squaring an array, A trigonometric function performed on the array, Conditional operations.		
	7	NumPy: Matrix multiplication, Indexing and slicing, Shape manipulation.		

	8 9 10 11	Pandas: Inserting and exporting data, CSV, Data cleansing, Checking the missing data. Pandas: Filling the missing data, String operations, Merging data Data operations: Aggregation operations, Joins, The inner join Data operations: The left outer join, The full outer join, The groupby function Inferential Statistics (Text 1, Chapter 2) Various forms of distribution, A normal distribution, A normal distribution from a		
III	13	binomial distribution. A Poisson distribution, A Bernoulli distribution. A z-score, A p-value, One-tailed and two-tailed tests.	12	Min 10
	15 16	Type 1 and Type 2 errors, confidence interval. Correlation, Z-test vs T-test, The F distribution.		
	17	The chi-square distribution, Chi-square for the goodness of fit, The chi-square test of independence, ANOVA.		
		Applying the Theory to Problems		
		(Text 1, Chapter 3)		
IV	18	What is data mining? Presenting an analysis.	8	Min 10
	19	Studying the Titanic – with all the required analysis		
		Open Ended	10	
V		Visualizing Data		
		(Text 1, Chapter 4)		
	1	Making Sense of Data through Advanced Visualization - Controlling the line properties of a chart		

	2	Using keyword arguments, Using the setter methods, Using the setp() command.
	3	Creating multiple plots, Playing with text, Styling your plots.
	4	Box plots, Heatmaps, Scatter plots with histograms.
	5	A scatter plot matrix, Area plots.
References	of Si 2 V 3 F 4 h 5 h 6 h 7 h 8 h	homas Nield, Essential Math for Data Science - Take Control Your Data with Fundamental Linear Algebra, Probability, and satistics, O'Reilly Media, 2022 Wes McKinney, Python for Data Analysis_ Data Wrangling with pandas, NumPy, and Jupyter-O'Reilly Media, Third Edition, 2022 abio Nelli, Python Data Analytics- With Pandas, NumPy, and Matplotlib, Apress, Second Edition, 2018 https://www.kaggle.com/datasets/yasserh/titanic-dataset https://www.w3schools.com/datascience/ds_python.asp https://realpython.com/python-for-data-analysis/ https://learn.microsoft.com/en-us/training/modules/explore-analyze-data-with-python/1-introduction https://onlinecourses.nptel.ac.in/noc24_cs54/preview https://onlinecourses.nptel.ac.in/noc20_cs46/preview

Note: For detailed understanding of the topics given in Module II, additional reference 1 can also be used, though it is not very essential.

Roadmap:

Being a practice-oriented course, the teachers may introduce the students to more problems so as to familiarize them with the tools in which they have been trained through this course. Many good examples on how to use these in real life situations can be found in Chapter 13 of additional reference 2 and the URLs provided in the additional references section.

Mapping of COs with PSOs and POs:

	PSO 1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	3	3	1	3	2	3	3	1	1	1
CO 2	3	2	3	2	3	2	1	1	1	1	1
CO 3	3	2	2	1	3	1	3	3	1	-	1

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Quiz	End Semester Examinations
CO 1 √ \		\checkmark		
CO 2 √ \	V V			
CO 3 √	√	V		

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Internal Exam
- Assignment
- Quiz
- End Semester Examinations

VALUE-ADDED COURSES (VAC)

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours							
Course Code	MAT3FV109(MAT3FV109(1)							
Course Title	HISTORY OF	MATHEMATICS							
Type of Course	VAC								
Semester	III								
Academic Level	200 - 299	200 - 299							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours					
		per week	per week						
	3	3	-	45					
Pre-requisites	Aptitude for M	athematics and its History.							
Course		oes into the philosophy of							
Summary		nethods, controversies in set theory around axiom of choice, its mplications and various philosophical alternative approaches to the							
	foundations of	mathematics.							

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Analyse Key Mathematical	An	С	Internal Exam/
	Theorems and Concepts from			Assignment/
	Ancient to Early Modern Times			Seminar/ Viva /
				End Sem Exam
CO2	Evaluate and Compare Methods of	Е	P	Internal
	Addressing Infinity and Large			Exam/Assignme
	Cardinal Numbers			nt/ Seminar/ Viva
				/ End Sem Exam
CO3	Ensure students gain a	An	С	Internal
	comprehensive understanding of			Exam/Assignme
	the historical development and			nt/ Seminar/ Viva
	foundational concepts of			/ End Sem Exam
	mathematics			

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit			
		Content	Hrs (36+9)	Ext. Marks
I		Ancient Origins & Foundations		
	Quick	Review of Ancient Mathematics		
	1	Chapter 1: Pythagoras Theorem		
	2	Chapter 2: Greek Geometry		
	3	Chapter 3: Greek Number Theory		
	Infini	ty in Greek Mathematics – Chapter 4		
	4	Section 4.1, 4.2-Fear of Infinity, Eudoxus' Theory of Proportions	9	Min 10
	5	Section – 4.3, 4.4-The Method of Exhaustion, Area of a Parabolic Segment		
	Sets &	z Logic – Chapter 24		
	6	Sections 24.1, 24.2, 24.4- Sets, Ordinals, Axiom of Choice & Large Cardinals		
	7	Section 24.3- Measure		
	8	Section 24.5-The Diagonal Argument		
	Biogra Archir			
II		Calculus – Chapter 9		
	9	Section 9.1, 9.2-What is Calculus, Early Results on Areas & Volumes	9	Min 10
	10	Section 9.3-Maxima, Minima & Tangents		
	11	Section 9.4-The Arithemetica Infinitorum of Wallis		
	12	Section 9.5-Newton's Calculus of Series		
	13	Section 9.6-The Calculus of Leibnitz		

	Biogr	aphical Notes: Wallis, Newton & Leibnitz		
III		Algebraic Equations & Numbers		
	Polyn	omial Equations – Chapter 6		
	14	Section 6.1, 6.2- Algebra, Linear Equations & Elimination		
	15	Section 6.3, 6.4 Quadratic Equations, Quadratic Irrationals		
	16	Section 6.5-The Solution of the Cubic	9	Min 10
	17	Section 6.6-Angle Division		
	18	Section 6.7-Higher Degree Equations		
	Biogr	aphical Notes: Tartaglia, Cardano & Viete		
	Comp	olex Numbers – Chapter 14		
	19	Section 14.1, 14.2, 14.3- Impossible Numbers, Quadratic & Cubic Equations		
	20	Section 14.4- Wallis' Attempt at Geometric Representation		
	21			
	Biogr	aphical Notes: d'Alembert		
IV		Topology – Chapter 22		
	22	Section 22.1, 22.2- Geometry & Topology, Polyhedron Formulas of Descartes & Euler		
	23	Section 22.3-The Classification of Surfaces		
	24	Section 22.4- Descartes & Gauss-Bonnet		
	25	Section Euler 22.5-Characteristic & Curvature	10	Min 10
	26	Section 22.7, 22.8- The Fundamental Group, The Poincare Conjecture		
	Biogr	aphical Notes: Poincare		
V		Open Ended Module	9	
	1	Hypercomplex Numbers – Chapter 20		

2	Number Theory in Asia – Chapter 5	
3	Mechanics – Chapter 13	
4	Complex Numbers & Functions – Chapter 16	
5	Non-Euclidean Geometry – Chapter 18	
6	Group Theory – Chapter 19	

References:

- 1. Mathematics, The Queen & Handmaiden of Sciences, E. T. Bell, McGraw Hill.
- 2. Men of Mathematics, E. T. Bell, Simon & Schuster, 1986.
- 3. What is Mathematics?, Richard Courant & Herbert Robbins,
- 4. History of Mathematics, 7th Edition, David M. Burton, McGraw Hill.
- 5. Mathematics In India, Kim Plofker, Princeton University Press, 2009.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	0	3	2	2	0	3	2	1
CO 2	3	2	1	0	2	1	2	0	2	1	0
CO 3	1	1	0	0	3	2	2	0	3	2	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	√	✓
CO 2	✓	√	√	✓	~
CO 3	√	√	√	√	√

Programme	B. Sc. Mathematics	B. Sc. Mathematics Honours							
Course Code	MAT3FV109(2)	MAT3FV109(2)							
Course Title	COMPUTATION	IAL LOGIC							
Type of Course	VAC								
Semester	III								
Academic Level	200-299	200-299							
Course Details	Credit	Lecture/Tutorial	Practical	Total					
		per week	per week	Hours					
	3	3	-	45					
Pre-requisites	Nil								
Course	The course will cover the basics of propositional and predicate logic,								
Summary	Compactness, and	Compactness, and the Resolution Theory.							

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Determine the Satisfiability of a	Ap	С	Internal
	Propositional Formula Set.			Exam/Assignment
				/ Seminar/ Viva /
				End Sem Exam
CO2	Analyse Theorems of	Ap	С	Internal
	Propositional Logic			Exam/Assignment
				/ Seminar/ Viva /
				End Sem Exam
CO5	Remember Proofs of Major	An	M	Internal
	Theorems of Logic			Exam/Assignment
				/ Seminar/ Viva /
d 70			(A) F 1	End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text book	Logic	for Computer Scientists, U. Schoning, Birkhauser, 2008	(Reprint).		
Module	Unit	Content	Hrs (45 = 36 +9)	Ext. Marks	
I	Propo	sitional Logic (Chapter 1 of Text Book).			
	1	Syntax and Semantics, Truth Tables, Satisfiability and Validity.			
	2	Equivalence and Normal Forms, Substitution Theorem	10	Min 10	
	3	DNF and CNF forms			
	4	Horn Formulas,			
	5	Compactness Theorem for Propositional Calculus			
	6	RevolutionTheorem and Resolution Algorithm			
	Subsection 7	Syntax of Predicate Logic Semantics - Structures and Models, Satisfiability and Validity	9	Min 10	
	9	Equivalence of formulas - Substitution, Variable Renaming.			
	10	Skolem Normal Form			
	11	Mathematical Theories - Axioms and Models.			
III	Herbr	and Theory for Predicate Logic: Section 2.4			
	12	Herbrand Universe and Structures			
	13	Herbrand Model and Satisfiability Theorem			
	14	Skolem Lowenheim Theorem	9 Min 10		
	15	Herbrand Expansion and Godel-Herbrand-Skolem Theorem			
	16	Compactness and Herbrand's Theorem			
IV	Resolu	ition for Predicate Logic: Section 2.5			

	17	Ground Resolution and Resolvants	8	Min 10
	18	Ground Resolution Theorem		
	19	Robinson's Unification Theorem and Algorithm]	
	20	Lifting Lemma		
	21	Resolution Theorem for Predicate Logic		
V	Logic	Programming		
	1	Unsolvability of Predicate Logic (Section 2.3 on Text Book)		
	2	SLD Resolution (Section 2.6 of Text Book)		
	3	Introduction to Logic Programming		
	4	Horn Clause Herbrand Programs		
	5	Evaluation Strategies for Horn Clause Programs.		

References:

- 1. J. H. Gallier, Logic for Computer Science Foundations of Automatic Theorem Proving, Dower, 2015.
- 2. S. Reeves, M Clarke, Logic for Computer Science, Addition Wesley, 1990. coding

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	1	0	3	2	2	0	3	2	1
CO 2	3	2	1	0	2	1	2	0	2	1	0
CO 3	1	1	0	0	3	2	2	0	3	2	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	nment Seminar Viva		End Semester Examinations
CO 1	√	√	>	>	✓
CO 2	√	√	√	✓	✓
CO 3	✓	√	√	√	✓

Programme	B. Sc. Mathematics Honours							
Course Code	MAT4FV110(1)							
Course Title	STATISTICS AND	MATHEMATICS WITH	R					
Type of Course	VAC							
Semester	IV							
Academic Level	200-299							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	3	3 - 45						
Pre-requisites	1. Basic School (+2)	1. Basic School (+2) Level Statistics						
	2. Basic Programming	g Experience						
Course Summary	understanding of R computation. The cur features, data storage explore graphical visuand functions, and coexercises and referend Murdoch, supplement	Mathematics with R" couprogramming for statistic riculum begins with an intege, and manipulation technical and manipulation technical second to relevant sections inted by further reading managements with practical skill attical modeling.	al analysis an roduction to R nniques. Subse onstructs such ra. Each unit n the textbook terials for deep	d mathematical, covering basic equent modules as flow control offers hands-on a by Braun and per exploration.				

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate Proficiency in Basic and Intermediate R Programming	Ap	P	Internal Exam/ Seminar/Assignment / End Sem Exam
CO2	Create and Interpret Various Types of Graphs Using R	С	С	Internal Exam/ Seminar/Assignment / End Sem Exam
CO3	Apply Advanced Mathematical and Statistical Functions in R	Ap	Р	Internal Exam/ Seminar/Assignment / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

[#] - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook		at Course in Statistical Programming with I och, Cambridge University Press, 3 rd Ed., 20			
Module	Unit	Content	Hrs (36+9)	External Marks (50)	
I		Introduction to R	1 /		
	1	R Studio. R Command Line. R as calculator. Named Storage. Quitting R.			
	2	Basic Features of R.	10	3.41. 10	
	3	Vectors in R.	12	Min 10	
	4	Data Storage in R. Packages,			
	5	Libraries and Repositories.			
	6	Getting Help. Useful Features of R.			
	7	Data Frames, tibbles, and lists			
	8	Data Input and Output			
	Refere	ence: Chapter 2, Sections 1 to 10			
II		Graphics with R			
	9	Bar Charts and Dot Charts. Pie Charts.			
	10	Histograms. Box Plots. Scatter Plots.	4	Min 10	
	11	Plotting from Data Frames. Quantiles. QQ Plots.			
	Refere	nce: Section 3.1.			
III		Programming in R			
	12	Flow Control. For Loop. Examples 4.1 to 4.4.			
	13	If Statement. Examples.	13 Min 10		
	14	Eratosthenes Sieve.	13 Min 10		
	15	While Loop. Examples. Newton's Method.			

	16	Repeat loop. Break and Next Statements. Examples and Exercises. Functions.					
	18	General Programming Guidelines					
IV	Kelei	rence: Chapter 4, Sections 1-4. Computational Linear Algebra					
1	21	Vectors and Matrices in R					
	21	vectors and matrices in R					
	12	Matrix Multiplication and Inversion	7 Min 10				
	19	Eigenvalues and Eigenvectors					
	20	Singular Value Decomposition]				
	Refer	rence: Sections 7.1, 7.2, 7.3, 7.4.1.					
V		OPEN ENDED	9				
Deference	Section 3.2 - 3.4: Higher Level Graphics with ggplot Section 4.6: Debugging and Maintenance Section 4.7: Efficient Algorithms. Section 6.1: Monte Carlo, 6.2: Pseudo-Random Numbers Appendix A: Overview of Random Variables and Distributions Section 6.3: Simulation of Random Variables Section 8.3: Newton-Raphson Section 8.5: Linear Programming						
Reference	97813 2. Ga 14493 3. Rui	ger D. Peng, R Programming for Data Scient 365056826. https://bookdown.org/rdpeng/rprogramming arrett Grolemund, Hands-On Programming 359019. https://rstudio-education.github.io/horiko Yoshida, Linear Algebra and its Application 19780367486846	with R, O'F	Reilly, 2014, ISBN			

Mapping of COs with PSOs and POs:

	l .	l .	l .		l .	l .	l .	l .		l .	
	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	1	2	2	2	2	2	2	1
CO 2	2	3	1	0	2	2	2	2	2	1	1
CO 3	1	1	3	2	2	2	2	2	2	1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	>	>	✓
CO 2	✓	√	√	✓	✓
CO 3	√	√	√	√	✓

Programme	B. Sc. Mathem	atics Honours				
Course Code	MAT4FV110	(2)				
cCourse Title	THE MATH	EMATICAL PRACTICES	OF MEDIEVA	L KERALA		
Type of Course	VAC					
Semester	IV					
Academic Level	200 - 299					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	3	3	-	45		
Pre-requisites	1. Fundamer	ntal Mathematics Concep	ots: Number	system,Basic		
	Mathematical (operations, Plane Geometry.				
	2. Convergenc	2. Convergence of series of numbers and functions.				
Course Summary		miliarises students with the tree Medieval Kerala School of				

CO	CO Statement	Cognitiv	Knowledge	Evaluation
		e Level*	Category#	Tools used
CO1	Uncover the underlying fundamental principles of the traditional mathematics practised in medieval Kerala.	U	С	Seminar Presentation/ Group Tutorials
CO2	Appreciate the role of thought process and working rules in mathematics.	U	С	Seminar Presentation/ Group Tutorials
CO3	Appreciate the usage of infinite series in mathematical analysis.	U	С	Seminar Presentation/ Group Tutorials

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text B	ook	 Lilavati of Bhaskaracarya Translated by K.S.Patwardhan, S.A.N. S.L.Singh, Motilal Banarsidass Publishers, Delhi. 2006. Ganita Yukti Bhasa of Jyesthadeva. Volume I. English Transla K.V.Sarma with explanatory notes by K.Ramasubramanian, M.D.S. M.S.Sriram. Hindustan Book Company, 2008. 	tion by	
Module Unit		Content	Hours (36 + 9)	Ext. Marks (50)
I	Meas	surement of sides and areas of triangles, quadrilaterals and circles.	9	14
	1	Computation of sides of a right triangle when one side is given.		
	2	Computation of area of triangles and quadrilaterals.		
	3	Computation of the perpendicular below the intersection of diagonals.		
	4	Approximating the surface area and volume of spheres.		
	5	Computation of sides of polygons inscribed in a circle.		
	6	Computation of the arcs and chords of circles.		
	_	ter 28 from Text I (Treatment based on English translations of Sanskrit s in Lilavati).		
II	R	ules concerned with Solids, Shadow of Gnomon and Pulverizer. Volume of Solids	9	12
	8	Volume of a heap of Grain		
	9	Shadows of Gnomon.		
	10	Pulverization		
		ters 29, 30, 31, 32 and 33 from Text I (Treatment based on English ations of Sanskrit verses in Lilavati).		
III		Circle and Circumference as in Yuktibhasa.	10	14
	11	Circumference of a circle approximated by regular polygons.		
	12	Circumference of a circle without calculating square roots.		
	13	Circumference of a circle in terms of the hypotenuses.		
	14	Summation of Series. Calculation of circumference.		
	16	Conversion of the Rsine to Arc.		
		ons 6.1 to 6.6 of Chapter 6 from Text II.		
IV		Sine and Cosine series as in Yuktibhasa.	8	10
	17	Some technical terms and derivation of Rsines.		
	18	Computation of Rsines.		
	19	Computation of Jya and Sara by sankalita and accurate circumference.		
	Section	ons 7.1 to 7.6 of Chapter 7 from Text II.		
V	From	m Ancient Mathematical Rules to Modern Computer Algorithms.	9	
(Open Ended)	20	Decoding of important Sanskrit verses discussed in Modules I and II from Lilavati (Text I).		

	21	Decoding of important Sanskrit verses discussed in Modules III and IV from Yuktibhasa (Text II).	
	22	Conversion of selected Rules discussed in Modules I to IV into	
		Computer Algorithms.	
	Rele		

References:

- 1. The Mathematics of India Concepts, Methods, Connections. P.P.Divakaran, Hindustan Book Agency, New Delhi, 2018.
- 2. A Passage to Infinity Medieval Indian Mathematics from Kerala and its Impact. George Ghevarghese Joseph, Sage Publications, New Delhi, 2009.
- 3. On an Untapped Source of Medieval Keralese Mathematics. C.T.Rajagopal and M.S.Rangachari, Archive for the History of Exact Sciences, 35 (2), (1986), 91 99.
- 4. Yukthibhasha. Rama Varma Maru Thampuran and A.R.Akhileswara Iyer (Editors)}, Mangalodayam Press, Trichur 1948.
- 5. Tantrasangraha of Nilakantha Somayaji with Yuktidipika and Laghuvivrti of Sankara. K.V.Sarma, Vishveshvaranand Visva Bandhu Institute of Sanskrit and Indological Studies, Punjab University, Hoshiarpur 1977.
- 6. Colebrook's translation of the Lilavati with Notes by Haran Chandra Banerji. The Book Company, Calcutta, 1927.
- 7. Mathematical Treasures Lilavati of Bhaskara. Frank J.Swetz and Victor J.Katz. Loci. 2011.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	1	3	2	1	0	2	3	0
CO 2	2	3	1	2	2	3	1	0	2	3	0
CO 3	2	2	2	2	2	1	1	0	2	2	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	>	√
CO 2	✓	√	√	√	✓
CO 3	√	√	√	√	√

VOCATIONAL MINORS

Programme	B. Sc. Mathem	atics Honours						
Course Code	MAT1VN101	MAT1VN101						
Course Title	PYTHON PRO	OGRAMMING						
Type of Course	Vocational Mi	nor – Data Analytics						
Semester	I							
Academic Level	100-199							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	3	2	75				
Pre-requisites	Nil		•	•				
Course	Course aims to	Course aims to provide basic programming skills in Python and Python						
Summary	libraries like N	umPy etc.						

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools
CO1	Understand the basics of Python	U	С	Internal
	Data structures and			Exam/Assignment/
	Programming constructs			Seminar/ Viva / End
				Sem Exam
CO2	Understand the basics of Python	U	P	Internal
	Programming constructs			Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
CO3	Apply Python Libraries for Data	Ap	P	Internal
	Science and Machine Learning			Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
ъ	1 (D) II 1 1 1 (II) A	1 (4) 4	1 (4) E	1 (F) (C) (O)

⁻ Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Metacognitive Knowledge (M)

Module	Unit	Content	Hrs (45+ 30)	Ext. Marks
			,	(70)
	1	Data Types and Data Structures Introduction to Python: - using the Python interpreter, Overview of programming in Python		
1	2	Expressions and Variables-String Operations.		
	3	Python Data Structures: lists & Tuple –Sets - Dictionaries	10	Min.15
	4 Programming Fundamentals: Conditions and Branching- Loops			
	5	Functions: formal arguments, variable-length arguments		
		Classes, files and modules		
	6	Introduction to Classes and Objects: -classes, class attributes, instances, instance attributes		
II	7	Binding and method invocation, inheritance, polymorphism,	12	Min.15
	8	Built-in functions for classes and instances.	12	
	9	Files and input/output, reading and writing files		
	10	Methods of file objects, using standard library functions		
	11	Exception Handling		
	In	troduction to Data Science using Python		
	12	Python libraries: Numpy- Scikit- Pandas.		
Ш	13	Importing Datasets: Importing and Exporting Data in Python, Basic Insights from Datasets	12	DA* 45
	14	Data cleansing and pre-processing: Identify and Handle Missing Values	12	Min.15
	15	Descriptive Statistics		
	16	ANOVA Correlation		

	17	Dealing with Outliers		
		Data Visualization Packages - Matplotlib and Seaborn		
IV	18	Overview of data visualization concepts		
	19	Introduction to Matplotlib and Seaborn	11	Min.15
	20	Basic Plotting and Customization with Matplotlib		
	21	Basic Plotting and Statistical Visualization with Seaborn		
	22	Other Visualization Libraries – Case Studies		
		Practical's	30	
	1	a) Write a program to calculate compound interest when principal, rate and number of periods are given		
		b) Read name, address, email and phone number of a person through keyboard and print the details		
	2	Write a program to check whether the given input is digit or lowercase character or uppercase character or a special character (use 'if-else-if' ladder)		
	3	a) Print the below triangle using for loop.		
		5		
		4 4		
		3 3 3		
		2222		
		11111		
		b) Python Program to Print the Fibonacci sequence using while loop		
	4	Python program to print all prime numbers in a given interval (use break)		
	5	Write a function called GCD that takes parameters a and b and returns their greatest common divisor		

6	Write a function called palindrome that takes a string argument and returns True if it is a palindrome and False otherwise. Remember that you can use the built-in function len to check the length of a string	
7	Define a new class called Circle with appropriate attributes and instantiate a few Circle objects. Write a function called draw_circle that draws circles on the canvas	
8	Write a python program that defines a matrix and prints	
9	Write a python program to perform addition of two square matrices	
10	Python program to perform read and write operations on a file.	
11	Use the structure of exception handling all general- purpose exceptions	
12	Write a Python program that calculates basic statistics measures using NumPy	
13	Create a CSV file named sales_data.csv, which contains sales data for a company. The file has the following columns: Date, Product, Units Sold, and Revenue. Write a Python program using Pandas to perform the following tasks: a) Read the data from the CSV file into a DataFrame.	
	b) Calculate the total revenue generated by each product.	
	c) Determine the total units sold for each product.	
	d) Find the date with the highest revenue.	
	e) Plot a bar chart showing the total revenue generated by each product.	

14	Create a CSV file named student_grades.csv, which contains the grades of students in different subjects. The file has the following columns: Student_ID, Maths, Science, English, and History. Write a Python program using Matplotlib to perform the following tasks: a) Read the data from the CSV file into a DataFrame. b) Calculate the average score for each subject. c) Plot a bar chart showing the average scores for each subject. d) Plot a histogram showing the distribution of scores in Maths.
15	Visualizing Titanic Dataset You are given a dataset containing information about passengers on the Titanic, including their survival status, age, sex, class, and fare. Write a Python program using Seaborn to perform the following tasks: a) Load the Titanic dataset into a DataFrame. b) Plot a count plot to visualize the number of passengers in each class. c) Plot a bar plot to visualize the survival rate of passengers based on their class and sex. d) Plot a heatmap to visualize the correlation matrix of numerical features (e.g., age, fare, and survival status).

References:

- 1. Core Python Programming by Wesley J. Chun, 2nd Edition , Pearson Education.
- 2. An Introduction to Python by Guido Van Russom, Fred L.Drake, Network Theory Limited.
- 3. Python for Data Science, Dr. Mohd. Abdul Hameed, Wiley Publications 1st Ed. 2021
- 4. Python Programming: A Modern Approach, Vamsi Kurama, Pearson
- 5. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython ,2nd edition, Wes McKinney, O'Reilly Media (2017)

Note: Proofs of all the results are exempted for the end semester exam.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	3	3	2	1	2
CO 2	2	1	3	1	3	3	2	1	2
CO 3	3	2	3	2	3	3	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	✓	√	✓
CO 2	√	√	√	>	✓
CO 3	√	✓	√	✓	~

Programme	BSc Mathemat	BSc Mathematics Honours					
Course Code	MAT2VN101	MAT2VN101					
Course Title	LINEAR ALC	GEBRA FOR MACHINE L	EARNING				
Type of Course	Vocational Mi	nor – Data Analytics					
Semester	II	II					
Academic Level	100-199	100-199					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	Foundations in Mathematics						
Course Summary	Course aims to provide basics of linear algebra which is useful in						
	understanding	understanding machine learning problems					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Solve system of linear equations	Ap	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Apply vector spaces and its properties	Ap	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Understand basics of matrix algebra and its applications	U	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook		uction to Linear Algebra" by Gilbert Strang, Wellesley ISBN: 978-0980232776	y-Cambridge	Press,
Module	Unit	Content	Hrs (45+ 30)	Marks (70)
I		Solving Linear Equations		
	1	Vectors and Linear Equation		
	2	The Idea of Elimination		
	3	Elimination Using Matrices	12	Min.15
	4	Rules for Matrix Operations		
	5	Inverse Matrices		
	6	Elimination = Factorization: A = L U		
	7	Transposes and Permutations		
II		Vector Spaces and Subspaces		
	8	Spaces of Vectors		
	9	The Nullspace of A: Solving $Ax = 0$	12	Min.15
	10	The Rank and the Row Reduced Form	12	MIII.15
	11	The Complete Solution to $Ax = b$		
	12	Independence, Basis and Dimension		
	13	Dimensions of the Four Subspaces		
III		Orthogonality		
	14	Orthogonality of the Four Subspaces	8	Min.15
	15	Projections		
	16	Least Squares Approximations		
	17	Orthogonal Bases and Gram-Schmidt		
IV		Eigenvalues and Eigenvectors		
	18	Introduction to Eigenvalues		
	19	Diagonalizing a Matrix	13	Min.15
	20	Symmetric Matrices		

21	Positive Definite Matrices	
22	Similar Matrices	
23	Singular Value Decomposition (SVD)	
	Practical using Python	30
1	Write Python function for vector operations: addition, scalar multiplication, norm,	
2	Write Python function for matrix operations: addition, multiplication, inverse, transpose	
3	Implement a Python function to solve a system of linear equations using NumPy's linear algebra module.	
4	Implement matrix factorization techniques such as LU decomposition in Python using NumPy	
5	Write a Python function to check if a set of vectors forms a vector space. And to determine if a set of vectors forms a subspace of a given vector space.	
6	Write a Python function to find the basis of the column space, null space of a matrix, to calculate the rank, dimension of a matrix using NumPy,	
7	Write a function to determine if a set of vectors is linearly independent, to find the span of a set of vectors. and to check if a set of vectors forms a basis for a given vector space.	
8	Create a function to determine if two given vectors are orthogonal to each other and to calculate the projection of one vector onto another vector.	
9	Use orthogonalization to find the least squares approximation of a vector that does not lie in the span of a given set of vectors.	
10	Implement the Gram-Schmidt process in Python to orthogonalize a given set of vectors and to orthogonalize columns of a given matrix	
11	Implement a function to perform a change of basis operation on a given vector.	
12	Write a Python script to verify the rank-nullity theorem by computing the rank and nullity of a matrix and	

-			
		comparing with the dimensions of its domain and codomain.	
	13	Write a Python function to compute the eigenvalues and eigenvectors of a square matrix using SciPy.	
	14	Write a Python function to check if a given square matrix is diagonalizable, to diagonalize a matrix using its eigenvectors and eigenvalues.	
	15	Write a Python function to compute the singular value decomposition of a matrix using NumPy, Use Singular Value Decomposition (SVD) to find the rank and dimension of a matrix, and discuss how it can be used for dimensionality reduction.	
		Reference	
	1	"Linear Algebra and Its Applications" by David C. Lay, Steven R. Lay, and Judi J. McDonald, Pearson, 2020,ISBN: 978-0134860244	
	2	Linear Algebra: Concepts and Applications" by Charles R. Johnson and Dean E. Riess, Wiley, 2017,ISBN: 978-1118612596	
	3	Linear Algebra: A Modern Introduction" by David Poole, Cengage Learning, 2016, ISBN: 978- 1305658004	
	4	Linear Algebra for Machine Learning" by Jason Brownlee, Machine Learning Mastery, 2021	
	5	Numerical Python: Scientific Computing and Data Science Applications with Numpy, SciPy, and Matplotlib" by Robert Johansson, Apress, 2018, ISBN: 978-1484242452	

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	2	2	3	1	1
CO 2	3	2	3	1	2	2	3	1	1
CO 3	3	3	3	1	2	2	3	1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	>	>	√
CO 2	√	√	√	√	~
CO 3	√	√	√	√	√

Programme	BSc Mathematics Honours					
Course Code	MAT3VN201					
Course Title	INTRODUCT	ΓΙΟΝ ΤΟ MACHINE LEA	RNING			
Type of Course	Vocational M	inor – Data Analytics				
Semester	III					
Academic Level	200-299					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	3	2	75		
Pre-requisites	Minor 1, Minor 2 (Code)					
Course	Course aims to provide basic concepts of machine learning including					
Summary	paradigms of s	paradigms of supervised, unsupervised and reinforcement learning.				

Course Outcomes (CO):

CO C	Statement Cogniti	e	Knowledge	Evaluation Tools used
		Level*	Category#	
	Machine Learning concepts and basic parameter estimation methods.	U	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
	Distinguish between Supervised, Unsupervised and semi supervised learning and evaluate the performance measures			Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Apply the algorithms identifying problem situations	Ap	P	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs	Ext.		
			(45	Marks		
			+30)	(70)		
	In	roduction to Machine Learning	,			
	1	Introduction: Machine Learning - Machine Learning Foundations				
I	2	Machine Learning Paradigms- Supervised, Unsupervised, Reinforcement	10	Min.15		
	3	Applications of Machine Learning, Case studies				
	4 Basics of parameter estimation - maximum likelihood estimation (MLE) and maximum a posteriori Estimation (MAP).					
	5	Introduction to Bayesian formulation.				
	Su	pervised Learning & SVM				
	6	Regression – Simple Linear regression and Multiple Linear Regression				
	7	Gradient Descent algorithm and Matrix method, Overfitting in regression.				
II	8	Methods for Classification- Logistic regression, Naive Bayes, Decision tree algorithm- ID3	14	Min.15		
	9 SVM - Introduction, Maximum Margin Classification, Mathematics behind Maximum Margin Classification					
	10	Maximum Margin linear separators, soft margin SVM classifier, non-linear SVM				
	11	Kernels for learning non-linear functions, polynomial kernel, Radial Basis Function (RBF)				
	Pe	rformance Measures & Unsupervised Learning				
	12	Regression Evaluation Metrics – Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R-squared (Coefficient of Determination)				

				1
III	13	Classification Evaluation Metrics - Precision, Recall, Accuracy, F-Measure, Receiver Operating Characteristic Curve (ROC), Area Under Curve (AUC)	11	Min.15
	14	Bootstrapping, Cross Validation, Ensemble methods, Bias-Variance decomposition.		
	15	Clustering - Similarity measures, Hierarchical Agglomerative Clustering, K-means partitional clustering		
	16	Expectation maximization (EM) for soft clustering		
	17	Dimensionality reduction –Principal Component Analysis, t-Distributed Stochastic Neighbour Embedding (t-SNE)		
	In	roduction to Advanced Machine Learning		
	18	Introduction to Reinforcement Learning, Learning Task		
IV	19	Learning Models for Reinforcement – (Markov Decision process, Q Learning - Q Learning function, Q Learning Algorithm), Application of Reinforcement Learning		
	20	Introduction to Neural Network, Perceptron, Multilayer feed forward network,	10	Min.15
	21	Activation functions (Sigmoid, ReLU, Tanh), Back - propagation algorithm.		
	22	Case Study: Applying Reinforcement Learning in Autonomous Vehicle Navigation Case Study: Predicting Customer Churn in Telecommunications Industry using Neural Networks		
		Practical's	30	
	1	Create a dataset containing measurements of the heights of students in a class. Estimate the parameters of a normal distribution that best describes the distribution of heights using Maximum Likelihood Estimation (MLE)		

2	The probability that it is Friday and that a student is absent is 3 %. Since there are 5 school days in a week, the probability that it is Friday is 20 %. What is the probability that a student is absent given that today is Friday? Apply Baye's rule in python to get the result	
3	Implement Simple Linear regression using python	
4	Implement Multiple Linear regression using python	
5	Implement the Logistic regression algorithm	
6	Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets	
7	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.	
8	Create a dataset containing information about the prices of houses in a certain city. The dataset includes various features such as the size of the house, number of bedrooms, location, and age of the house, as well as the corresponding sale prices. Your task is to build a regression model to predict the sale price of houses based on their features and evaluate the model's performance using appropriate evaluation metrics (MAE, MSE, RMSE, R-squared)	
9	Implement the support vector machine algorithm	
10	Create a dataset containing information about customers of a telecommunications company. The dataset includes features such as customer demographics, service usage, and contract details, as well as a binary target variable indicating whether each customer churned (1) or not (0). Your task is to build a classification model to predict customer churn based on the available features. Evaluate the trained model's performance on the testing data using the following evaluation metrics: Accuracy, Precision, Recall, F1-score and ROC Curve. Use SVM Classification	
11	Program to implement K-Means clustering Algorithm	

	_ _	
12	Create dataset containing information about customers of a retail store, including features such as age, income, and spending score. Your task is to perform clustering on the dataset to identify distinct groups of customers based on their purchasing behaviour. Use K-means Algorithm	
13	Implement Dimensionality reduction using Principal Component Analysis (PCA) method	
14	Implementing a simple reinforcement learning algorithm	
15	Create a dataset containing information about patients with diabetes, including features such as age, BMI, blood pressure, and glucose levels, as well as an indication of whether each patient has diabetes or not. Your task is to build a simple neural network classifier to predict whether a patient has diabetes based on their features	
	References	
1	. M. Gopal, "Applied Machine Learning", McGraw Hill Education	
2	. Tom M Mitchell, —Machine Learning, First Edition, McGraw Hill Education, 2013	
3	. Machine Learning: A Probabilistic Perspective by Kevin P. Murphy	
4	Ethem Alpaydin, Introduction to Machine Learning, 2nd edition, MIT Press 2010.	

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	2	3	1	2
CO 2	2	3	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	>	>	√
CO 2	√	√	√	✓	✓
CO 3	√	√	√	✓	√

Programme	BSc Mathematics Honours					
Course Code	MAT8VN401					
Course Title	INTRODUCT	TION TO ARTIFICIAL INT	TELLIGENCE	E		
Type of Course	Vocational M	inor – Data Analytics				
Semester	VIII					
Academic Level	400-499					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	3	2	75		
Pre-requisites	Python Program	mming, Foundation of Mathe	matics, Machin	ne Learning		
Course Summary	This course o	n "Introduction to Artificial	Intelligence" of	ffers a thorough		
	exploration of	AI fundamentals and tech	hniques. Cover	ring topics like		
	representation,	search algorithms, and intell	igent agents, st	udents' progress		
	to advanced concepts including knowledge representation, neural networks,					
	and practical implementations. With hands-on sessions focusing on					
	algorithm impl	ementation and machine lear	ning models, stu	udents gain both		
	theoretical und	lerstanding and practical skill	s essential for A	AI development.		

Course Outcome

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand foundation principles, mathematical tools and program paradigms of AI and Apply problem solving through search for AI applications	U	С	Internal exam/ Assignment/ Seminar/ External/ Practical Assessment
CO2	Understand formal methods of knowledge representation and Apply logic and reasoning techniques to AI applications	U	Р	Internal exam/ Assignment/ Seminar/ External/ Practical Assessment
CO3	Apply intelligent agents for Artificial Intelligence programming techniques	Ap	Р	Internal exam/ Assignment/ Seminar/ External/ Practical Assessment

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content		Ext.
			(45	Marks
			+30)	(70)
		Introduction to Artificial Intelligence	.00)	
	1	Introduction to AI, History and Evolution of AI, Applications		
	2	Introduction to representation and search		
I	3	The Propositional calculus, Predicate Calculus, Calculus expressions and Applications	10	Min.15
	4	State Space Search, Production Systems, Problem Characteristics, types of production systems, Graph theory		
	Intelligent Agents: Agents and Environments, The nature of environments, The structure of agents. concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation			
		Search Strategies		
	 Uninformed Search Strategies - Breadth First Search, Depth First Search, Depth Limited Search, Iterative Deepening Depth First Search Bidirectional Search, Comparison of Uninformed search Strategies, Searching with partial information 			
II	8	Sensor-less problems, Contingency problems		
	9	Informed Search Strategies - Generate& test, Hill Climbing, Best First Search	14	Min.15
	10	A* and AO* Algorithm, Constraint satisfaction, Backtracking Search		
	11	Game playing: Minimax Search, Alpha-Beta Cutoffs		
	12	Optimal Decisions in Games, Stochastic Games		
		Knowledge Representation		
	13	Knowledge Representation -Knowledge based agents, Wumpus world		
III	14	Knowledge Representation -issues, The frame problem.		
	15	First order Logic: Representation, Inference, Reasoning Patterns, Resolution, Forward and Backward Chaining	13	Min.15

	16	Propositional Logic: Representation, Inference, Reasoning Patterns, Resolution, Forward and Backward Chaining		
	17	Agent based and distributed problem solving		
	18	Introduction to Expert System Technology, Bayes Rule, Bayesian Network, Hidden Markov Model, Decision Network		
IV		Introduction to ANN		
	19	Introduction ANN, biological neuron, Artificial neuron		
	20	Perceptron Learning		351 45
	21	Back Propagation algorithm	8	Min.15
	22	Introduction to Natural Language Processing, Pattern recognition Case study - Enhancing Customer Service with AI- Powered Chatbots		
		Practical's	30	
	1	Write a program to implement depth first search algorithm.		
	2	Write a program to implement breadth first search algorithm.		
	3	Write a program to simulate 4-Queen / N-Queen problem.		
	4	Write a program to solve tower of Hanoi problem.		
	5	Write a program to implement alpha beta search.		
	6	Write a program for Hill climbing problem.		
	7	Write a program to implement A*algorithm		
	8	Write a program to implement AO*algorithm		
	9	Design the simulation of tic-tac-toe game using min-max algorithm		
	10	Write a program to shuffle Deck of cards		
	11	Write a program to derive the predicate.		
	12	Solve constraint satisfaction problem		
		(a) Derive the expressions based on Associative law		

	I		
		(b)Derive the expressions based on Distributive law.	
	13	Develop a simple text-based game using Python that simulates a classic "Guess the Number" game. The game should generate a random number between 1 and 100 and prompt the player to guess the number. After each guess, the game should provide feedback to the player (e.g., "Too high", "Too low", or "Correct!") and keep track of the number of attempts it takes for the player to guess the correct number. Once the player guesses the correct number, the game should display the number of attempts and ask if the player wants to play again	
	14	Train a simple machine learning model, such as a linear regression or logistic regression classifier, using a dataset of your choice and evaluate its performance using appropriate metrics.	
	15	Implement a decision tree classifier from scratch and apply it to a classification task with a real-world dataset	
		References	
	1	S. Russel and p. Norvig, Artificial intelligence – A Modern Approach, 3rdEdn, Pearson	
	2	Artificial Intelligence: Elaine Rich, Kevin Knight, Mc-GrawHill	
	3	Artificial Intelligence by Luger (Pearson Education)	
	4	D W Patterson, introduction to Artificial Intelligence and Expert Systems, PHI, 1990	
	5	Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville:	

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	>	>	>	✓
CO 2	√	√	√	✓	√
CO 3	✓	✓	√	√	✓

Programme	BSc Mathemat	ics Honours					
Course Code	MAT1VN102	MAT1VN102					
Course Title	STATISTICS	S FOR DATA SCIENCE					
Type of Course	Vocational M	inor – Data Analytics					
Semester	I						
Academic Level	100-199	100-199					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	Foundations in mathematics						
Course Summary	Course aims to provide basic concepts such as central tendency, probability, sampling and testing						

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand measures of	U	C	Internal exam/ Assignment/
	central tendency, dispersion,			Seminar/ External/
	regression			Practical Assessment
CO2	Distinguish discrete and	U	С	Internal exam/ Assignment/
	ontinuous distributions and			Seminar/ External/
	its properties			Practical Assessment
CO3	Analyse data using testing	An	С	Internal exam/ Assignment/
	hypothesis			Seminar/ External/
				Practical Assessment

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs	Ext.
			(45	Marks
			+30)	(70)
I		Descriptive statistics		
	1	Measures of central tendency: - mean, median, mode		
	2	Measures of dispersion: Range, Mean deviation, Quartile deviation and Standard deviation		
	3	Moments, Skewness and Kurtosis,	11	Min.15
	4	Correlation - Linear correlation		
	5	Karl Pearson's coefficient of Correlation, Rank correlation		
	6	Linear regression- Simple and Multiple		
II		Probability		
	7	Sample space, Events, Different approaches to probability	7	Min.15
	8	Addition and multiplication theorems on probability		WIIII.13
	9	Independent events, Conditional probability		
	10	Bayes Theorem		
III		Probability Distributions		
	11	Random variables, Probability density functions and distribution functions		
	12	Marginal density functions, Joint density functions		
	12	Mathematical expectations	12	Min.15
	14	Moments and moment generating functions		
	15	Discrete probability distributions – Binomial, Poisson distribution		
	16	Continuous probability distributions- uniform distribution and normal distribution.		
III		Sampling and Testing		
	17	Theory of Sampling: - Population and sample, Types of sampling Theory of Estimation: - Introduction, point estimation		

	Calculate the mean, median, and mode of a dataset.		•
	Practical using MS Excel	30	
23	ANOVA – one-way & two-way classification		
22	Chi-square test (Concept of test statistic ns2/σ2), F test - test for equality of two population variances		
21	Small sample tests – t Test for single mean, difference of means. Paired t-test		
20	Large sample tests – Testing of hypothesis concerning mean of a population and equality of means of two populations	15	Min.15
19	Null and alternative hypothesis, types of errors, level of significance, critical region		NC 15
18	methods of point estimation-Maximum Likelihood estimation and method of moments, Central Limit Theorem(Statement only)		

- 2. Calculate the range of a dataset.
- 3. Calculate the mean deviation of a dataset.
- 4. Calculate the quartile deviation of a dataset.
- 5. Calculate the standard deviation of a dataset.
- 6. Calculate skewness and kurtosis of a dataset.
- 7. Compute the Karl Pearson's coefficient of correlation between two variables.
- 8. Calculate rank correlation (e.g., Spearman's rank correlation) between two variables.
- 9. Perform simple linear regression analysis.
- 10. Perform multiple linear regression analysis.
- 11. Calculate probabilities of events using different approaches (e.g., classical, relative frequency, subjective).
- 12. Apply addition and multiplication theorems of probability to solve problems.
- 13. Calculate conditional probabilities and use Bayes' Theorem.
- 14. Generate random samples from various probability distributions (e.g., binomial, Poisson, normal) and calculate relevant statistics.
- 15. Conduct hypothesis testing using Excel functions for large sample tests (e.g., z-test, t-test), small sample tests (e.g., t-test for single mean, paired t-test), chi-square test, F-test, and ANOVA.

	References	
1	Fundamentals of statistics: S. C. Gupta, 6th Revised and enlarged edition April 2004, Himalaya Publications	

2	Fundamentals of Mathematical Statistics- S. C. Gupta, V. K. Kapoor. Sultan Chand Publications	
3	Introduction to Mathematical Statistics - Robert V. Hogg & Allen T. Craig. Pearson education	
3	Probability and Statistics for Engineering and the Sciences, Jay L. Devore, Cengage Learning, January 2022, ISBN for the 10th Edition: 978-1305251809	

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	3	3	3	1	2
CO 2	2	1	3	1	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	2	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	>	√
CO 2	✓	✓	√	√	✓
CO 3	√	√	√	√	√

Programme	BSc Mathematic	BSc Mathematics Honours			
Course Code	MAT2VN102				
Course Title	R PROGRAM	MING			
Type of Course	Vocational Mir	nor – Data Analytics			
Semester	II				
Academic Level	100-199				
			_		
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours	
		per week	per week		
		1	per week		
	4	3	2	75	
Pre-requisites	Foundations in Mathematics, Programming Fundamentals				
Course	Course aims to provide R programming fundamentals and algorithm				
Summary	writing				

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the basic	U	P	Internal exam/ Assignment/
	programming structure of			Seminar/ External/ Practical
	R, visualization of models			Assessment
	nd their inference.			
CO2	Apply statistical functions,	Ap	P	Internal exam/ Assignment/
	models and their Inferences			Seminar/ External/ Practical
				Assessment
CO3	Design data model,	C	P	Internal exam/ Assignment/
	visualization and inference			Seminar/ External/ Practical
	of dataset to gain insights			Assessment

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P)

Metacognitive Knowledge (M)

Module	Unit	Content	Hrs	Ext.
			(45	Marks
			+30)	(70)
		Introduction to R	,	
I	1	Introduction to R: R Studio, Basic components in R Studio.		
	2	Basic R syntax: variables, data types, operators	10	Min.10
	3	Working with Data structures Vectors, List, Matrices & Arrays, Factors and Data frame	10	Willi.10
	4	Control structures (if-else statements, Loops) & Functions		
	5	Measures of Central Tendency & Dispersion		
		Data Manipulation and Visualization with R		
	6	Importing and exporting data in R (CSV, Excel, Xml, Json, databases)		
	7	Data Cleaning: Exploring raw data, Missing values, Zeros and NAs – Separating, Uniting Columns, String Manipulation, Filling Missing values		
II	8	Data manipulation with dplyr: filtering, selecting, mutating, summarizing	13	Min.20
	9	Basic Charts: Pie, Bar, Histogram, Boxplot and Scatterplot		
	10	Data visualization with ggplot2: creating plots (scatter plots, bar plots, line plots)		
	11	Customizing plots and Introduction to other Visualization Packages (ggplot2 extensions, plotly)		
		Statistical Analysis with R		
	12	Overview of statistical analysis in R		
III	13	Descriptive statistics: mean, median, standard deviation, variance	9	Min.15
	14	Probability distributions and random variables]	141111.13
	15	Hypothesis testing: t-tests, chi-square tests, ANOVA		

	16	Linear regression analysis: simple and multiple regression		
	17	Introduction to statistical modelling with R		
IV		Introduction to Machine Learning with R		
	18	Introduction to machine learning concepts and algorithms		
	19	Supervised learning techniques: classification and regression	13	Min.15
	20	Unsupervised learning techniques: clustering and dimensionality reduction		
	21	Case study – Explore Diamond dataset for prize prediction		
	22	Applied Analytics – HR, Finance & Marketing, Case studies		
		Practical's	30	
	1	Write a R program to take input from user (name, age, oc and display the values with datatypes. Also print version		
	2	Write a R program to calculate the sum of numbers from	1 to 10).
	3	Write a R Program to create a list containing a vector, a and write a code for the following. 1) Give names to the elements in the list 2) Add element at the end of the list 3) Remove the second element	matrix	and a list

4	R program to create a data frame of student with four given vectors and write a code
	1) to get the structure of a given data frame.
	2) to get the statistical summary and nature of the data of a given data frame.
	3) to extract specific column from a data frame using column name.
	4) to extract first two rows from a given data frame.
	5) to extract 3rd and 5th rows with 1st and 3rd columns from a given data frame.
	6) to add a new column in a given data frame.
	7) to add new row(s) to an existing data frame.
	8) to drop column(s) by name from a given data frame.
	9) to drop row(s) by number from a given data frame.
	a) 10) to extract the records whose grade is greater than 9
5	Write a R program to find biggest of 3 number (if -else)
6	Write a R program to find sum of elements of vector and to find minimum and maximum elements of vector (loop)
7	Write a R program to Import a CSV file named 'data.csv' into a data frame named 'data_df'.
	a) Display the structure of the 'data_df' data frame using the 'str()' function.
	b) Print the first few rows of the data frame to inspect the data using the 'head()' function.
	c) Calculate summary statistics (mean, median, min, max) for numerical variables in the data frame using the 'summary()' function.

8	Write	 a Program in R for Missing value imputation Load the 'iris' dataset into a data frame named 'iris_df'. Introduce missing values into the 'iris_df' dataset by randomly replacing a certain percentage of values with NA. Display the summary of missing values in the dataset using the 'is.na()' and 'colSums()' functions. Impute missing values in the dataset using a simple technique (e.g., replacing missing values with the mean or median of the corresponding column). Verify that there are no missing values remaining in the dataset after imputation. Compare summary statistics (mean, median, min, max) of the dataset before and after missing value imputation.
	9	Import a dataset from a CSV file and use dplyr to filter rows based on a condition.
	10	Write a R Program to print data in different graph formats (Histogram, Pie, Bar, Boxplot, Scatterplot)
	11 W	rite a R program to visualize different plot using ggplot 1) Load the 'iris' dataset into a data frame named 'iris_df'. 2) Create a scatter plot of 'Sepal.Length' against 'Sepal.Width' with points colored by 'Species'. 3) Generate a box plot of 'Petal.Length' for each 'Species'. 4) Create a histogram of 'Sepal.Length' with customized bin widths and colors. 5) Generate a density plot of 'Petal.Width' for each 'Species' overlaid on the same plot. 6) Create a bar plot showing the count of each 'Species' in the dataset. 7) Generate a violin plot of 'Petal.Length' for each 'Species' with custom fill colors. 8) Create a line plot showing the trend of 'Sepal.Length' over 'Petal.Length' for each 'Species'. 9) Combine multiple plots into a single visualization using facets based on 'Species'. 10) Customize the appearance of the plots by adding titles, axis labels, legends, and adjusting plot aesthetics (e.g., colors, transparency).
	12 W	rite a Program to find mean, median, standard deviation and variance

The heights of 6 randomly chosen sailors are 63,65,68,69,71,72 Those of 10 randomly chosen soldiers are 61,62,65,66,69,69,70,7 inches. Discuss whether this data gives a suggestion that the sail taller than soldiers. Aim: To test the claim that sailors are taller than soldiers (t-test)				
14	Write a R Program to Apply Simple Linear Regression	on and	Multiple	
15	Write a R Program to Apply K-means clustering algorithm to the data and visualize the clusters.			
	References			
1	Hands-On Programming with R by Garrett Grolemund			
2	R Cookbook by Winston Chang, Paul Teetor, and Joseph Adler			
3	Beginning R: The Statistical Programming Language by Mark Gardener			
4	The Art of R Programming by Norman Matloff			
5	Advanced R by Hadley Wickham			

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	3	2	3	3	3	2	2
CO 2	3	3	3	2	3	3	3	2	2
CO 3	3	3	3	2	3	3	3	2	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	signment Seminar		End Semester Examinations
CO 1	√	√	>	>	✓
CO 2	√	√	√	✓	✓
CO 3	✓	√	√	√	✓

Programme	BSc Mathema	BSc Mathematics Honours					
Course Code	MAT3VN202	MAT3VN202					
Course Title	DATA MINI	NG					
Type of Course	Vocational N	Iinor – Data Anal ytics					
Semester	III						
Academic Level	200-299						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	3	2	75			
Pre-requisites	Basic Knowledge in MS Excel						
Course Summary	Course aims t	Course aims to provide basic data mining techniques using Weka tool					

Course Outcome:

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the fundamental concepts and principles of data mining	U	С	Internal exam/ Assignment/ Seminar/ External/ Practical Assessment
CO2	Understand the mining techniques like association, classifications and clustering on datasets	U	P	Internal exam/ Assignment/ Seminar/ External/ Practical Assessment
CO3	Apply data mining techniques to real-world datasets	Ap	P	Internal exam/ Assignment/ Seminar/ External/ Practical Assessment

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs	Ext.
			(45	Marks
			+30)	(70)
		Introduction to Data Minin g		
	1	Data Warehousing - Data warehousing architecture, Warehouse Schema, Data warehouse backend process, Multidimensional Data Model		
	2	OLAP Operations, Introduction to KDD process, Data mining	8	Min 15
I	3	Data mining Functionalities, Classification of Data Mining Systems.		
	4	Data Warehousing Case Study: Government, Tourism and Industry		
	5	Data Preprocessing - Data Cleaning, Data Integration and Transformation, Data Reduction, Data discretization		
		Association Analysis		
	6	Association Analysis - Basic Concepts, Frequent Item set Mining Methods: Apriori Algorithm, generating association Rules from Frequent Item sets, Improving the Efficiency of Apriori.	7	Min 15
II	7	Evaluation of Association Patterns, Visualization, Partition algorithm	•	
		A Case Study on Association using Orange Tool		
	8	Dynamic Item set Counting algorithm- FP-tree growth algorithm-Incremental Algorithm-Border algorithm		
		Classification & Prediction		
	9	Classification Technique: Introduction, Decision Trees: Tree Construction Principle – Attribute Selection measure – Tree Pruning - Decision Tree construction Algorithm – CART – ID3		
III	10	Bayesian Classification: Bayes' theorem, Naïve Bayesian Classification	14	Min 15
	11	K- Nearest Neighbour Classifiers, Support Vector Machine. Evaluating the performance of a Classifier, Methods for comparing classifiers, Visualization		
	12	Case Study of Classification using Orange Tool		

	13	Linear Regression, Nonlinear Regression, Other Regression-Based Methods		
		Clustering		
	14			
	15	Partitioning Methods: k-Means and k- Medoids, CLARANS		
	16	Hierarchical Method: Agglomerative and Divisive Hierarchical Clustering		
	17	Density-based Clustering - DBSCAN, Grid based clustering-STING		
IV	18	Evaluation of Clustering Method	16	Min 15
	19	Case Study of Clustering using Orange Tool		
	20	Introduction to Web Mining - Basic concepts, Web content mining, Web structure mining, Web usage mining		
	21	Introduction to Text mining, Text Preprocessing, Text clustering		
	22			
		Practical's		
	1	Installation of WEKA Tool		
	2	Creating new Arff File		
	3	Pre-Processes Techniques on Data Set		
	4	Pre-process a given dataset based on Handling Missing Values		
	5	Generate Association Rules using the Apriori Algorithm		
	6	Generating association rules using FP growth algorithm	30	
	7	Build a Decision Tree by using ID3 algorithm		
	8	Build a Naïve Bayesian Classifier		
	9	Build a K- Nearest Neighbour Classifiers		
	10	Build a Support Vector Machine		

11	Build a Linear Regression	
12	Build K-Means Algorithm	
13	Build K-Medoids Algorithm	
14	Build Hierarchical Clustering Algorithms	
15	Create Student. ariff file to suggest better college using Decision tree	
	References	
1	Arun K Pujari, "Data Mining Techniques", Universities Press. 2012	
2	Pang-Ning Tan, Michael Steinbach, Vipin Kumar, 'Introduction to Data Mining'	
3	G. K. Gupta, "Introduction to Data Mining with Case Studies", Easter Economy Edition, Prentice Hall of India, 2006.	
4	Data Mining: Practical Machine Learning Tools and Techniques" by Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal:	
5	Data Mining: Concepts and Techniques" by Jiawei Han, Micheline Kamber, and Jian Pei:	

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	2	3	1	2
CO 2	2	3	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	>	>	✓
CO 2	√	√	√	√	✓
CO 3	✓	√	√	√	✓

Programme	BSc Mathematics Honours							
Course Code	MAT8VN402							
Course Title	DATA VISUA	DATA VISUALIZATION						
Type of Course	Vocational Minor – Data Analytics							
Semester	VIII							
Academic Level	400-499							
Course Details	Credit Lecture/Tutorial Practical Total Hours							
		per week	per week					
	4 3 2 75							
Pre-requisites	Minor 1 and minor 2							
Course Summary	Course aims to provide data visualization techniques using R programming and interactive chart building							

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand the methods for	U	C	Internal exam/ Assignment/
	visualizing data			Seminar/ External/ Practical
				Assessment
CO2	Apply Visualization	Ap	P	Internal exam/ Assignment/
	methods for different data			Seminar/ External/ Practical
	domains			Assessment
CO3	Design an Interactive data	С	С	Internal exam/ Assignment/
	visualization story board for			Seminar/ External/ Practical
	data			Assessment

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module	Unit	Content	Hrs	Ext.		
			(45	Marks		
			+30)	(70)		
		Introduction to Data Visualization	8	Min.10		
	1	Definition, Methodology, Data Visualization and Theory, Visualization Design objectives				
I	2	Key Factors – Purpose, visualization function and tone, visualization design options – Data representation, Data Presentation				
1	3	Seven stages of data visualization, widgets, and introduction to different data visualization tools				
	4	Computational Statistics and Data Visualization, Presentation and Exploratory Graphics				
	5	Graphics and Computing, Statistical Historiography				
		Visualizing Data Methods	13	Min.15		
	6	Mapping, Time series, Connections and correlations -Scatter plot maps				
	7	Hierarchies and Recursion – introduction to Networksand Graphs, Info graphics				
II	8	Complete Plots, Customization of plots -Parameters, Arranging Plots, Annotation,				
	9	Extensibility-Building Blocks, Combining Graphical Elements, 3-D Plots, Data Handling				
	10 Data and Graphs, Graph Layout Techniques, Graph Drawing					
	11	Bipartite Graphs, Hierarchical Trees, Spanning Trees, Networks, Directed Graphs, Tree maps				
		Data visualization using R	12	Min.20		
	12	Environment setup - R and RStudio, Basic plotting functions in R				
III	13	Creating scatter plots, histograms, pie chat, bar charts, Boxplot, violin plot, line chart, heatmap, Customizing plot appearance,				
	14	Introduction to ggplot2, Grammar of graphics, creating static plots with ggplot2, Customizing plots with themes and scales				

	15	Introduction to plotly for interactive plotting, Creating interactive scatter plots, line plots, and bar charts, Adding interactivity with tooltips, zooming, and brushing Designing interactive dashboards with Shiny and plotly,		
		Other Visualization Pacakges		
IV		Introduction to Tableau	12	Min.15
	17	Environment Setup, Design flow, Data Types, File Types		
	18	Data Source - Custom Data View, Extracting Data, Field operations, Metadata, Data Joining and Blending		
	19	Worksheets- Adding, renaming, reordering Worksheet, Workbook Calculations		
	20	Set and Filters- Sorting, Quick filtering, Context filtering, Condition filtering, Filter operations		
	21	Tableau Charts — Bar Chart, Line Chart, Multiple Measure Line Chart, Pie Chart		
	22	Scatter Plot, Bubble Chart, Bullet Graph, Box Plot, Dashboard – Formatting – Forecasting – Trend Lines		
	Pı	actical's using R	30	
	1	Exploring Data with Basic Plots		
		• Load a dataset (e.g., Iris dataset) into R.		
		 Create scatter plots, histograms, and box plots to explore the distribution of variables. 		
		 Label axes, add titles, and customize colors and styles 		
	2	Visualizing Relationships		
		Choose a dataset with multiple variables.		
		 Create scatter plots to visualize relationships between pairs of variables. 		
		 Use color or shape to represent categorical variables. 		
		Analyze patterns and correlations in the data		

3	Time Series Visualization	
	• Load a time series dataset (e.g., stock prices, weather data) into R.	
	 Create line plots to visualize trends and fluctuations over time. 	
	 Use different line styles or colors to represent multiple time series. 	
	Add labels, titles, and annotations to the plot	
4	Bar and Pie Charts:	
	 Load a dataset with categorical variables (e.g., survey responses, product categories). 	
	 Create bar charts and pie charts to visualize the distribution of categories. 	
	• Customize the appearance of the charts (e.g., colors, labels, legends).	
5	Heatmaps and Correlation Plots:	
	 Load a dataset with numerical variables (e.g., correlation matrix). 	
	 Create heatmaps to visualize correlations between variables. 	
	 Customize the color scheme and add annotations to the heatmap. 	
	Interpret the patterns of correlation in the data	
6	Box Plots and Violin Plots:	
	 Load a dataset with numerical and categorical variables (e.g., Iris dataset). 	
	 Create box plots and violin plots to visualize the distribution of numerical variables across different categories. 	
	 Compare the use of box plots and violin plots for data visualization 	

7	Interactive Visualizations with ggplot2 and Shiny:	
	• Create interactive plots using ggplot2 and Shiny.	
	• Design a Shiny app with interactive controls (e.g., sliders, checkboxes) to explore different aspects of the data.	
8	Geospatial Visualization:	
	• Load a dataset with geographical information (e.g., map coordinates, regions).	
	 Create maps using packages like ggmap, leaflet, or tmap to visualize spatial data. 	
	 Add layers, markers, and tooltips to the map to provide additional information 	
9	Faceted Plots:	
	 Load a dataset with multiple groups or categories. 	
	 Create faceted plots using ggplot2 to display subsets of the data in separate panels. 	
	• Customize the appearance of each panel (e.g., axis limits, labels, titles	
10	Network Visualization:	
	• Load a dataset representing a network or graph (e.g., social network, co-authorship network).	
	 Create network visualizations using packages like igraph or networkD3. 	
	 Customize the layout, node colors, and edge weights to convey information about the network structure. 	
11	Word Clouds and Text Visualization:	
	 Load a dataset containing text data (e.g., tweets, reviews). 	
	 Create word clouds to visualize word frequency and importance. 	
	• Customize the appearance of the word cloud (e.g., colors, fonts, word sizes).	

	<u>-</u>	
12	Dashboards with Plotly and Shiny:	
	 Design an interactive dashboard using Plotly and Shiny. 	
	• Incorporate interactive plots, tables, and controls to explore and analyze data dynamically.	
13	Dynamic Visualizations	
	 Load a dataset with time-varying data (e.g., stock prices, sensor readings). 	
	Create animated plots using package plotly.	
	• Customize the animation settings (e.g., frame rate, transition effects) to enhance data visualization.	
14	Visualizing Hierarchical Data	
	 Load a dataset with hierarchical or nested structure (e.g., organizational hierarchy, file directories). 	
	 Create tree maps, dendrograms, or sunburst plots to visualize hierarchical data structures. 	
	• Customize the appearance of the plots to highlight different levels of hierarchy.	
15	Dashboard Design	
	 Design a dashboard layout with multiple visualizations and interactive components. 	
	 Arrange the visualizations in a coherent and informative manner. 	
	 Add text annotations, titles, and summaries to provide context and insights. 	
	References	
1	Ben Fry, "Visualizing Data", O"Reilly Media, Inc., 2007.	
2	Scott Murray, "Interactive data visualization for the web", O"Reilly Media, Inc., 2nd edition, 2017	
3	Fundamentals of Data Visualization" by Claus O. Wilke	
4	Data Visualization: A Practical Introduction" by KieranHealy	
5	Learning tableau by Joshua N. Milligan	

Mapping of COs with PSOs and POs:

	1								1
	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level Correlation			
-	Nil		
1	Slightly / Low		
2	Moderate / Medium		
3	Substantial / High		

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	>	>	>	✓
CO 2	√	√	√	√	~
CO 3	√	√	√	√	√

MINOR COURSES

Programme	B.Sc. Mathematics Honours						
Course Code	MAT1MN101						
Course Title	CALCULUS						
Type of Course	Minor						
Semester	I						
Academic Level	100 –199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Basic Idea of Fu	nctions, Limits and Continu	ity				
Course Summary	This course co	vers fundamental concepts	in calculus: It	begins with			
	introducing the	e idea of tangent lines, rates	of change, and	d the derivative,			
		ir application in describing		_			
	instantaneous r	rates of change. Basic rules	of differentiati	ion, including the			
		ent, and power rules, as wel	•	_			
		erivatives are discussed. It a					
		xtrema of functions, the me					
	-	ts, curve sketching, indefin		•			
		substitution, and the geome	-				
		d. These sections explore v		*			
		tions, determining areas un	der curves, and	d solving real-			
C. O. Assessed	world problem	S.					

CO	CO Statement Cognitive		Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Demonstrate proficiency in finding	Ap	С	Internal
	derivatives using various			Exam/Assignme
	differentiation techniques and apply			nt/ Seminar/
	them to describe motion, rates of			Viva / End Sem
	change, and related rates problems.			Exam
CO2	Analyse functions to determine	An	С	Internal
	extrema, concavity, and inflection			Exam/Assignme
	points using the Mean Value Theorem,			nt/ Seminar/
	First and Second Derivative Tests,			Viva / End Sem
	leading to effective curve sketching.			Exam
CO3	Apply integration techniques to	Ap	С	Internal
	compute areas between curves,	_		Exam/Assignme
	volumes of solids of revolution, arc			nt/ Seminar/
	lengths, and surface areas, culminating			Viva / End Sem
	in understanding the Fundamental			Exam
	Theorem of Calculus and its			
	applications.			

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text B	ook	Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (20) 0-534-46579-7.	10) ISBN	I-13: 978-
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
		Introduction to Differentiation		
	1	A Quick Review of Functions, Limits, and Continuity (This		
		unit is optional)		
	2	Section 1.5: Tangent Lines and Rates of Change -		
		An intuitive Look, Defining a Tangent Line, Tangent		
	2	lines, Secant lines and Rates of Change.		
	3	Section 2.1: The Derivative -		
		The Derivative, Using the Derivative to Describe the		
		Motion of the Magley, Differentiation, Finding the		
I		Derivative of a Function, Differentiability, Differentiability and Continuity	14	Min 15
	4	Section 2.2: Basic Rules of	17	141111 15
	4	Differentiation -Some Basic Rules	_	
	5	Section 2.3: The Product and Quotient Rules -		
		The Product and Quotient Rules(Example 6 is optional),		
		Extending the Power Rule, Higher- Order Derivatives		
	6	Section 2.6: The Chain Rule – Composite Functions,		
		The Chain Rule, Applying The Chain Rule		
	7	Section 2.7 : Implicit Differentiation – Implicit		
	,			
	8			
		Section 2.8: Related Rates - Related Rates Problems, Solving Related Rates		
		Problems.		
		Applications of Differentiation		
	9	Section 2.9: Differentials and Linear Approximations -		
		Increments, Differentials, Linear Approximations		
	10	Section 3.1: Extrema of Functions -		
		Absolute Extrema of Functions, Relative Extrema of		
		Functions, Finding the Extreme Values of a Continuous		
	4.4	Function on a Closed Interval		
	11	Section 3.2: The Mean Value Theorem -		
TT		Rolle's Theorem, Some Consequences of the Mean		Min 15
II		Value Theorem, Determining the Number of Zeros of a	12	IVIIII 13
	12	Function.	12	
	12	Section 3.3: Increasing and Decreasing Functions and the First Derivative Test -		
		Increasing and Decreasing Functions, Finding the		
		Relative Extrema of a Function		
	13	Section 3.4: Concavity and Inflection Points -		
		Concavity, Inflection Points (Example 6 is optional),		
		The Second Derivative Test, The roles of f' and f'' in		
		Determining the Shape of a Graph.		
		Introduction to Integration		
III	1/1 \$	ection 3.6: Curve Sketching -		

		The Graph of a Function, Guide to Curve Sketching(Up					
		to and including Example 2)	10	Min 15			
	15	Section 4.1: Indefinite Integrals -					
		Antiderivatives, The indefinite Integral, Basic Rules of					
		Integration. Section 4.2: Integration by Substitution - How the method of Substitution Works, The Technique of Integration by Substitution (Example 8 is optional)					
	16						
		· · · · · · · · · · · · · · · · · · ·					
	17	Section 4.3: Area - An Intuitive Look, Sigma Notation, Summation					
		Formulas, Defining the Area of The Region Under the Graph of a Function (Example 9 is optional)					
	18	Section 4.4: The Definite Integral -					
		Definition of the Definite Integral (Examples 2,3, and 4					
		are optional), Geometric Interpretation of the Definite					
		Integral, The Definite Integral and Displacement,					
		Properties of the Definite Integral.					
	, , , , , , , , , , , , , , , , , , ,	The Main Theorem and Applications of Integration					
	19	Section 4.5: The Fundamental Theorem of Calculus -					
		The Mean Value Theorem for Definite Integrals, The					
		Fundamental Theorem of Calculus - Part 1, Fundamental					
		Theorem of Calculus - Part 2, Evaluating Definite					
	Integrals using Substitution, Definite Integrals of Odd and Even Functions						
		12	Min 15				
	20	Section 5.1: Areas Between Curves -					
IV		A Real- Life Interpretation, The Area Between Two					
		Curves, Integrating with Respect to y					
	21	Section 5.2: Volumes: Disks, Washers, and					
		CrossSections -					
		Solids of Revolution, The Disk Method, The Method of					
		Cross Sections.					
	22	Section 5.4: Arc Length and Areas of Surfaces of					
		Revolution - Definition of Arc Length, Length of a					
		Smooth Curve, Surfaces of Revolution					
		Open Ended	12				
	1	Limits Involving Infinity; Asymptotes					
	2	Derivatives of Trigonometric Functions					
	3	The General Power Rule and using the Chain Rule					
	4	Volumes Using Cylindrical Shells					
\mathbf{V}	5	Work, Moments and Centre of Mass					
	6	Taylor & Maclaurin's Series					
	7	Approximation by Taylor Series					
	8	Transcendental Functions					
	9	Improper Integrals					
	10	Numerical Integration					

References:

- 1. Calculus & Analytic Geometry, 9th Edition, George B. Thomas & Ross L. Finney, Pearson Publications.
- 2. Thomas' Calculus, 14 $^{\rm th}$ Edition, Maurice D. Weir, Christopher Heil, & Joel Hass, Pearson Publications.

- 3. Calculus, 7 th Edition, Howard Anton, Biven, & Stephen Davis, Wiley India.
- 4. Advanced Engineering Mathematics, 10 th Ed, Erwin Kreyszig, John Wiley & Sons.
- 5. Calculus, 4 th Edition, Robert T Smith and Roland B Minton, McGraw-Hill Companies
- 6. Calculus, 9 th Edition, Soo T Tan, Brooks/Cole Pub Co.
- 7. Calculus, Vol 1, Tom M. Apostol, John Wiley & Sons.
- 8. Michael Van Biezen Calculus Lectures: https://youtu.be/YZYxPclo2rg?si=qKCt6ty8m5dBR4DG

Note: 1) Optional topics are exempted for end semester examination.

2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	1	2	1	3	1	1
CO 2	2	1	3	1	3	1	3	1	2
CO 3	3	2	3	1	3	1	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	ternal Exam Assignment		Viva	End Semester Examinations
CO 1	√	>	>	>	✓
CO 2	✓	√	√	✓	✓
CO 3	✓	√	√	√	✓

Programme	B.Sc. Mathematics Honours							
Course Code	MAT2MN101							
Course Title	DIFFERENTIAL EQUATIONS AND MATRIX THEORY							
Type of Course	Minor	<u> </u>						
Semester	II							
Academic	100 –199							
Level								
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Basic Calculus							
Course	This course cov	vers a range of topics. It star	rts with introduc	eing fundamental				
Summary	terminology an	d methods for solving diffe	rential equations	s, including				
	separable equat	ions, linear equations, exac	t equations, and	equations with				
		cients. Then it proceeds into	-	-				
	_	inear equations with consta		•				
	1	iding methods for their solu	-	·				
		definition, properties, and a						
	*	ransforming derivatives are						
		ction to vector spaces matri		-				
		and separable partial differe						
		foundation in advanced cal	culus and its ap	plications to				
	engineering and	l physics.						

CO	CO Statement	Cogntive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Solve basic ordinary	Ap	C	Internal
	differential equations			Exam/Assignment/
	using separation of			Seminar/ Viva /
	variables, linear methods,			End Sem Exam
	and Laplace transforms.			
CO2	Apply concepts from	Ap	С	Internal
	linear algebra, including	_		Exam/Assignment/
	matrices, determinants,			Seminar/ Viva /
	and eigenvalues, to solve			End Sem Exam
	systems of equations and			
	analyse linear systems.			
CO3	Analyse periodic functions	An	С	Internal
	using Fourier series and			Exam/Assignment/
	solve separable partial			Seminar/ Viva /
	differential equation			End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

[#] - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

E	Text	Advanced Engineering Mathematics, 6 th Edition, Dennis G. Zil Learning LLC (2018) ISBN: 978-1-284-10590-2	l, Jones &	Bartlett
,	Module	Content	Hrs (48 +12)	Ext. Marks (70)
		Differential Equations		
I	1	Introduction to Differential Equations -		
		Section 1.1: Definitions and Terminology -		
		A Definition, Classification by Type, Notation, Classification		
	2	by Order , Classification by Linearity, Solution. Section 2.2: Separable Equations -		
		Introduction, A Definition, Method of Solution.		
	3	Section 2.3: Linear Equations -		
	3	Introduction, A Definition, Standard Form, Method of	11	Min 15
		Solution, An Initial Value Problem (Examples 4 & 5, ref		
	1	section 1.1)		
	4	Section 2.4: Exact Equations - Introduction, Differential of a Function of Two Variables,		
		Method of Solution.		
	5	Section 3.3: Homogeneous Linear Equations with		
		ConstantCoefficients -		
		Introduction, Auxiliary Equation.		
	6	Section 3.6: Cauchy-Euler Equations -		
		Cauchy-Euler Equation (Second Order Only), Method of		
		Solution.		
		Laplace Transforms		
II	7	Section 4.1: Definition of the Laplace Transform -Basic Definition (Definition 4.1.1 onwards)		
	8	Section 4.1: Definition of the Laplace Transform -		
		L is a Linear Transform.		
	9	Section 4.2: The Inverse Transform and Transforms		
		ofDerivatives - Inverse Transforms		
	10	Section 4.2:The Inverse Transform and Transforms	4.4	3.51.4.5
		ofDerivatives - Transforms of Derivatives	14	Min 15
	11	Section 7.6: Vector Spaces -		
	10	Vector Space (Example 2 is optional), Subspace.		
	12	Section 7.6: Vector Spaces -		
		Basis, Standard Bases, Dimension, Span Matrix Theory	12	Min 15
III	13	Matrix Theory Section 8.2: Systems of Linear Algebraic Equations -	13	Min 15
111	13	Introduction, General Form, Solution, Augmented Matrix,		
		Elementary Row Operations, Elimination Methods.		
	14	Section 8.2: Systems of Linear Algebraic		
	T	Equations -Homogeneous Systems, Notation		
	15	Section 8.3: Rank of a Matrix -		

		Introduction, A Definition, Row Space, Rank by Row						
		Reduction, Rank and Linear Systems.						
	16	Section 8.4: Determinants -						
		Introduction, A Definition (Topics up to and including						
		Example 2).						
	17	Section 8.8: The Eigenvalue Problem -						
		Introduction, A Definition (Topics up to and Including						
		Example 2)						
	18	Section 8.8: The Eigenvalue Problem -						
		A Definition (Topics from Example 3 onwards), Eigenvalues						
		and Eigenvectors of A^{-1} .						
IV		Fourier Series and PDE						
	19	Section 12.2: Fourier Series -						
		Trigonometric Series (Definition 12.2.1 onwards),						
		Convergence of a Fourier Series.						
	20	Section 12.3: Fourier Cosine and Sine Series -	-					
		Introduction, Even and Odd Functions, Properties, Cosine	10					
		and Sine Series (Definition 12.3.1 onwards).	10	Min 15				
	21	Section 13.1: Separable Partial Differential Equations -						
		Introduction, Linear Partial Differential Equation, Solution of						
		a PDE, Separation of Variables.						
	22	Section 13.1: Separable Partial Differential						
		Equations -Classification of Equations.						
		Open Ended						
	1	Initial-Value Problems						
	2	Differential Equations as Mathematical Models						
	3	Second Order Non-Homogeneous Equations-Method of						
		Undetermined Coefficients, Variation of Parameters.						
	4	Linear Models – IVP	12					
	5	Linear Models - BVP	-					
	6	Non-linear Models	-					
	7	Half- Range Fourier Series						
	8	Classical PDEs and Boundary- Value Problems						
	1 Advanced Engineering Mathematics, Erwin Kreyszig, 10 th Edition, Wiley India.							
	2	Calculus & Analytic Geometry, 9th Edition, George B. Thomas	& Ross L.	Finney,				
	Pearson Publications.							
	3	Calculus, 7th Edition, Howard Anton, Biven, & Stephen Davis,	Wiley India	a.				

Note: 1) Optional topics are exempted for end semester examination.

2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	3	3	3	1	2
CO 2	2	1	3	1	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	2	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	>	>	√
CO 2	✓	✓	√	√	✓
CO 3	√	√	√	✓	✓

Programme	B. Sc. Mathem	B. Sc. Mathematics Honours				
Course Code	MAT3MN201	MAT3MN201				
Course Title	CALCULUS (OF SEVERAL VARIABL	ES			
Type of Course	Minor					
Semester	III					
Academic Level	200 - 299					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	4	-	60		
Pre-requisites	Calculus of Sir	ngle Variable				
Course	This course pro	ovides a comprehensive stud	dy of advanced of	calculus topics,		
Summary	including parti	al derivatives, limits, contin	uity, the chain ru	ile, and vector-		
	valued function	ns. Students will explore of	lirectional deriv	atives, tangent		
	planes, and ext	planes, and extrema of functions of multiple variables, as well as integral				
	calculus techniques such as line integrals, double integrals (including					
	those in polar c	oordinates), surface integral	ls, and the applic	ations of these		
	concepts in vec	ctor calculus and field theor	y			

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Apply Multivariable	Ap	P	Internal
	Calculus Concepts to			Exam/Assignment/
	Vector Valued Functions			Seminar/ Viva /
				End Sem Exam
CO2	Apply Techniques of	Ap	P	Internal
	Multivariable Integration			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
CO3	Apply Advanced Theorems	Е	С	Internal
	in Multivariable Calculus			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook		Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (2010) ISBN-13: 978-0-534-46579-7					
Module	Unit	Content	Hrs	Ext. Marks			
			(48				
			+12)	(70)			
I		Partial Derivatives	14	Min 15			
	1	12.1: Vector Valued Functions & Space Curves					
	2	12.2: Differentiation & Integration of Vector Valued Functions					
	3	13.1: Functions of Two or More Variables					
	4	13.2: Limits & Continuity					
	5	13.3: Partial Derivatives					
	6	13.4: Differentials					
	7	13.5: The Chain Rule					
	8	13.6: Directional Derivatives					
	9	13.7: Tangent Planes & Normal Lines					
	10	13.8: Extrema of Functions of Two Variables					
II	V	ector Derivatives – Calculus of Scalar & Vector Fields	11	Min 15			
	11	13.6: Gradient Vector of a Scalar Field					
	12	15.1, 15.2: Divergence & Curl of Vector Fields					
	13	15.3: Line Integrals					
	14	15.4: Path Independence & Conservative Vector Fields					
		(Fundamental Theorem of Line Integration- Gradients)					
III		Multiple Integration	14	Min 15			
	15	14.1: Double Integrals					
	16	14.2: Iterated Integrals					
	17	14.3: Double Integrals in Polar Coordinates					
	18	14.4: Applications of Double Integrals					
	19	14.5: Surface Area					

	20	14.6: Triple Integrals		
	21	14.7: Triple Integrals in Cylindrical & Spherical Coordinates		
	22	14.8: Change of Variables in Multiple Integrals		
IV]	Integral Calculus of Fields & Fundamental Theorems	11	Min 15
	23 1	.5: Green's Theorem		
	24	24 15.6: Parametric Surfaces		
	25 15.7: Surface Integrals			
	26 15.8: Divergence Theorem			
	27 1	.9: Stoke's Theorem		
V		Open Ended Module – Complex Analysis	12	
	1	Algebra of Complex Numbers, Complex Functions, Complex Differentiation		
	2	Cauchy-Riemann Equations, Analytic Functions		
	3	Complex Line Integrals		
	4	Cauchy's & Cauchy-Goursat Theorems		
	5	Cauchy's Integral Formula, Derivative Formula		
	6	Morera's & Liouville's Theorem, Fundamental Theorem of Algebra		
	7	12.3: Arc Length & Curvature		
	8	12.4: Velocity & Acceleration		
	9	12.5: Tangential & Normal Components		
	10	13.9: Lagrange Multipliers		

- . References:
- 1. Advanced Engineering Mathematics, Erwin Kreyzsig, 10th Edition, Wiley India.
- 2. Advanced Engineering Mathematics, 6th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2.
- 3. Calculus & Analytic Geometry, 9th Edition, George B. Thomas & Ross L. Finney, Pearson Publications.
- 4. Thomas' Calculus, 14th Edition, Maurice D. Weir, Christopher Heil, & Joel Hass, Pearson Publications.
- 5. Calculus, 7th Edition, Howard Anton, Biven, & Stephen Davis, Wiley India.
- . Note: 1) Optional topics are exempted for end semester examination.
- 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	3	3	1	2
CO 2	3	0	3	2	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	>	>	>	✓
CO 2	√	√	√	√	√
CO 3	✓	√	√	✓	✓

Programme	B.Sc. Mathematics Honours					
Course Code	MAT1MN102					
Course Title	DIFFERENTIAL C	ALCULUS				
Type of Course	MINOR					
Semester	I					
Academic Level	100-109					
Course Details Credit		Lecture/Tutorial	Practicum	Total Hours		
		per week	per week			
	4	4	-	60		
Pre-requisites	Set theory along with a	an understanding of the re	eal number sys	stem.		
Course Summary	Set theory along with an understanding of the real number system. This course provides a foundational understanding of calculus concepts: From the beginning sections students learn about limits (including one-sided limits and limits at infinity), continuity (definitions and properties), and the intermediate value theorem. Modules II and III cover differentiation techniques, including tangent lines, the definition of derivatives, rules of differentiation (product, quotient, chain), implicit differentiation, and advanced topics like L'Hopital's Rule for indeterminate forms. Module IV focuses on the analysis of functions, discussing concepts such as increasing/decreasing functions, concavity, inflection points, and techniques for identifying relative extrema and graphing polynomials.					

CO	CO Statement Cognitive	Level*	Knowledge	Evaluation Tools used
CO1	Analyse limit, continuity and differentiability of a function	An	Category#	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Apply rules and techniques of differentiation to solve problems, also find limit in indeterminate forms involving transcendental functions	Ap	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Draw a polynomial function by analysing monotonicity, concavity and point of inflection using derivatives test	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text b	ook	Anton, Howard, Irl C. Bivens, and Stephen Davis. <i>Calculus: e transcendentals</i> . 10 th Edition, John Wiley & Sons, 2021.	arly	
Module	Unit	Content	Hrs 60	External Marks (70)
		Fundamentals of Limits and Continuity		
	1	Section 1.1: Limits (An Intuitive Approach) - Limits, One-Sided Limits, The Relationship Between One- Sided and Two Sided Limits		
	2	Section 1.2: Computing Limits - Some Basic Limits, Limits of Polynomials and Rational Functions as $x \to a$		
	3	Section 1.2: Computing Limits - Limits involving Radicals, Limits of Piecewise-Defined Functions		
Ι	4	Section 1.3: Limits at Infinity; End Behaviour of a Function Limits of Rational Functions as $x \to \pm \infty$ - A Quick Method for Finding Limits of Rational Functions as $x \to +\infty$ or $x \to -\infty$	14	Min.15
	5	Section 1.5: Continuity - Definition of Continuity, Continuity on an interval, Some Properties of Continuous Functions,		
	6	Section 1.5: Continuity - Continuity of Polynomials and Rational Functions, Continuity of Compositions, The Intermediate- Value Theorem.		
		Differentiation		
	7	Section 2.1: Tangent Lines and Rates of Change - Tangent lines, Slopes and Rate of Change		
	8	Section 2.2: The Derivative Function - Definition of the Derivative Function-Topics up to and including Example 2.		
II	9	Section 2.3: Introduction to Techniques of Differentiation - Derivative of a Constant, Derivative of Power Functions, Derivative of a Constant Times a Function, Derivatives of Sums and Differences, Higher Derivatives	14	Min.15
	10	Section 2.4: The Product and Quotient Rules - Derivative of a Product, Derivative of a Quotient, Summary of Differentiation Rules.	_	
	11	Section 2.5: Derivatives of Trigonometric Functions - Example 4 and Example 5 are optional		
	12	Section 2.6: The Chain Rule Derivatives of Compositions, An Alternate Version of the Chain Rule, Generalized Derivative Formulas		
		Differentiation contd :		
	13	Section 3.1: Implicit Differentiation - Implicit Differentiation (sub section)	10	

III	14				
	15	Trigonometric Functions - Derivatives of Exponential Functions		Min.15	
	Section 3.3: Derivatives of Exponential and Inverse Trigonometric Functions - Derivatives of the Inverse Trigonometric Functions				
	17	Section 3.6: L'Hopital's Rule; Indeterminate Forms - Inderminate Forms of Type $0/0$, Indeterminate Forms of Type ∞/∞			
	18	Section 3.6: L'Hopital's Rule; Indeterminate Forms - Inderminate Forms of Type $0 \cdot \infty$, Indeterminate Forms of Type $\infty - \infty$			
		Applications of Differentiation			
	19	Section 4.1: Analysis of Functions I: Increase, Decrease, and Concavity -			
	20	Increasing and Decreasing Functions Section 4.1: Analysis of Functions I: Increase, Decrease, and Concavity - Concavity, Inflection Points			
IV	Section 4.2: Analysis of Functions II: Relative Extrema; Graphing Polynomials - Relative Maxima and Minima, First Derivative Test, Second Derivative Test		10	Min 15	
	22	Section 4.2: Analysis of Functions II: Relative Extrema; Graphing Polynomials Geometric Implications of Multiplicity, Analysis of Polynomials			
		Module V (Open Ended)			
		Infinite Limits Differentiability, Relation between Derivative and Continuity			
		Parametric Equations, Parametric Curves Inverse Trigonometric Functions and their derivatives	12		
\mathbf{V}		Taylor series expansion of functions Maclaurin series of single control to the series of sing			
		Maclaurin series of sin x, cos x, tan x, $\log(1+x)$, $\log(1-x)$ etc Binomial expansion of $\frac{1}{(1+x)}$, $\frac{1}{\sqrt{1-x}}$, $\frac{1}{\sqrt{1-x}}$ etc			
		Different coordinate systems: - Cartesian, Spherical, and Cylindrical coordinates			
		Conic sections with vertex other than the origin			
		Indeterminate Forms of Type 0 ⁰ , ∞ ⁰ ,1 ∞ Graphing Rational Functions			
Refere	ncos		l	<u> </u>	
Refere	1	Calculus and Analytic Geometry, 9 th Edition, George B. The L. Finney, Pearson Publications.	omas Ji	and Ross	

2	Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (2010) ISBN-13: 978-0-
	534-46579-7.
3	Marsden, Jerrold, and Alan Weinstein. Calculus I. Springer Science &
	Business Media, 1985.
4	Stein, Sherman K. Calculus in the first three dimensions. Courier Dover
	Publications, 2016.

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	1	2	1	3	1	2
CO 2	3	1	3	1	2	1	3	1	2
CO 3	2	1	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	>	>	✓
CO 2	√	√	√	✓	~
CO 3	√	√	√	✓	√

Programme	B.Sc. Mathematics Honours								
Course Code	MAT2MN102								
Course Title	CALCULUS AND M	CALCULUS AND MATRIX ALGEBRA							
Type of Course	MINOR								
Semester	II								
Academic Level	100-109	100-109							
Course Details	Credit	Credit Lecture/Tutorial Practicum Total Hours							
	per week per week								
	4	4	-	60					
Pre-requisites	Basic Calculus								
Course Summary	Students learn about a	antiderivatives, the indefi	nite and definite	integrals, Riemann					
	sums, and the Funda	mental Theorem of Calo	culus. Course ex	xplores the average					
		aluating definite integra							
		I finding the length of							
	functions of multiple variables, including notation, graphs, limits, continuity, and								
	partial derivatives for functions of two or more variables. Course also focuses on								
	matrix algebra, de	terminants, eigenvalue	problems (in	ncluding complex					
	eigenvalues) and orth	ogonal matrices and thei	ir properties.						

CO	CO Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Demonstrate proficiency in applying calculus techniques to solve analytical and geometrical problems involving indefinite and definite integrals, substitution methods, and integration by parts.	Ap	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Apply multivariable calculus concepts, including functions of multiple variables, limits, continuity, and partial derivatives, to model and analyse real-world phenomena and mathematical problems.	Ap	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Apply linear algebra principles, such as matrix operations, determinants, and eigenvalue problems, to analyze and solve systems of equations and geometric problems.	Ap	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

[#] - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text Book		. Howard Anton, Bivens and Stephen Davis, Calculus- Early Transo Edition). . Advanced Engineering Mathematics(6/e): Dennis G Zill Jones & E LLC (2018) ISBN: 9781284105902		•		
Module	Unit	Content	Hrs 60	External Marks (70)		
		Indefinite and Definite Integrals	12	Min 15		
	1	Section 5.2: The Indefinite Integral - Antiderivatives, The Indefinite Integral, Integration Formulas, Properties of the Indefinite Integral, Integral Curves				
I	2	Section 5.3: Integration by Substitution - u-Substitution, Easy to Recognize Substitutions, Less Apparent Substitutions				
	3	Section 5.5: The Definite Integral - Riemann Sums and the Definite Integral, Properties of the Definite Integral.				
	4	Section 5.6:The Fundamental Theorem of Calculus - The Fundamental Theorem of Calculus (sub section), The Relationship Between Definite and Indefinite Integrals.				
		Techniques and Applications	13	Min 15		
	5	Section 5.8: Average Value of a Function and its Applications - Average Value of a Continuous Function (up to and including Example 2 only)				
	6	Section 5.9: Evaluating Definite Integrals by Substitution - Two Methods for Making Substitutions in Definite Integrals				
	7	Section 6.1: Area Between Two Curves - Area Between $y=f(x)$ and $y=g(x)$, Reversing the Roles of x and y				
II	8	Section 6.4: Length of a Plane Curve - Arc Length				
	9	Section 7.2: Integration by Parts - The Product rule and Integration by Parts, Guidelines for Integration by Parts, Repeated Integration by Parts				
	10	Section 7.5: Integrating Rational Functions by Partial Fractions - Partial Fractions, Finding the form of a Partial Fraction Decomposition, Linear Factors, Quadratic Factors (Example 4 is optional), Integrating Improper Rational Functions.				
		Multivariable Calculus	10	Min 15		
	11	Section 13.1: Functions of Two or More Variables: Notation and Terminology, Graphs of Functions of Two Variables.				
III	12	Section 13.1: Functions of Two or More Variables: Level Curves, Level Surfaces.				
	13	Section 13.2: Limits and Continuity - Limit along Curves				
	14	Section 13.2: Limits Continuity - Continuity				
	15	Section 13.3: Partial Derivatives -				

		T		
		Partial Derivatives of Functions of Two Variables, The		
		Partial Derivative Function, Partial Derivative Notation,		
		Implicit Partial Differentiation, Partial Derivatives and Continuity		
		Section 13.3: Partial Derivatives		
	16	Partial Derivatives of Functions with more than Two		
	10	Variables, Higher order Partial Derivatives, Equality of		
		Mixed Partials.		
	15	Linear Algebra Essentials Section 8.1: Matrix Algebra	13	Min 15
	17			
	18	Section 8.2: Systems of Linear Algebraic Equations		
	19	Section 8.8: The Eigenvalue Problem -		
	17	Topics up to and including Example 4		
IV	20	Section 8.8: The Eigenvalue Problem -		
	20	Topics from Complex Eigenvalues onwards		
	21	Section 8.10: Orthogonal Matrices -		
	21	Topics up to and including Theorem 8.10.3		
	22	Section 8.10: Orthogonal Matrices -		
	22	Topics from Constructing an Orthogonal Matrix onwards		
		Module V (Open Ended)	12	
		Fundamental theorems in Vector Calculus such as Green's		
		theorem, divergence theorem, and the Stokes' theorem.		
		Trigonometric Substitutions		
		Integrating Trigonometric Functions		
		Volume of Solids of Revolution, Area of Surfaces of		
V		Revolution		
		The Chain Rule in Partial Differentiation		
		Directional Derivatives and Gradients, Tangent Planes and		
		Normal Vectors		
		Basics of Vector Calculus including the differential operators		
		such as gradient, divergence and curl.		
		Simpsons Rule, Trapezoidal rule in Numerical Integration		
		Algebra of Complex Numbers		
Refere	nces			
	1	Calculus and Analytic Geometry, 9 th Edition, George B. Tho	mas Jr	and Ross L.
		Finney, Pearson Publications.		
	2	Calculus, Soo T. Tan, Brooks/Cole Cengage Learning (2010) I	SBN-1	3: 978-0-
		534-46579-7.		
	3	Marsden, Jerrold, and Alan Weinstein. Calculus I. Springer Sci	ience 8	Business
		Media, 1985.		
	4	Stein, Sherman K. Calculus in the first three dimensions. Court	ier Dov	/er
		Publications, 2016.		
	5	Kreyszig, Erwin. Advanced Engineering Mathematics 9th Edit	ion wit	h Wiley Plus
		Set. Vol. 334. US: John Wiley & Sons, 2007.		
	6	Elementary Linear Algebra, Applications version, 9 th edition,	Howa	d Anton
		and Chriss Rorres		
L	1	I .		

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs:

	1								
	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	1	1	3	0	0
CO 2	2	1	2	1	2	1	2	0	0
CO 3	2	1	2	1	2	1	2	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	>	>	√
CO 2	✓	✓	√	√	✓
CO 3	√	√	√	✓	✓

Programme	B.Sc. Mathematics Honours					
Course Code	MAT3MN202					
Course Title	DIFFERENTIAL EQUATIONS AND FOURIER SERIES					
Type of Course	Minor					
Semester	III					
Academic Level	200-209					
Course Details Credit		Practicum	Total			
		week	per week	Hours		
	4	4	-	60		
Pre-requisites	Basic Calculus and fa	amiliarity & Real Numbers				
Course Summary	In Module I students	s are introduced to various type	es of different	tial equations,		
	including linear, sepa	arable, exact equations, and Bern	noulli's equation	on. Module II		
	delves deeper into l	inear equations, both homogene	eous and nonl	nomogeneous.		
	Module III introduc	es Fourier series, including tri	igonometric s	eries, Fourier		
	cosine and sine serie	es, and half-range expansions.	Module IV tr	ransitions into		
	algebra of complex numbers, , and functions of complex variables, including					
	analytic functions and	d the Cauchy-Riemann equations,	which are fund	amental in		
	complex analysis.					

CO	CO Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply various methods, such as separation of variables, linear, and exact equations, integrating factors, and substitution, to solve differential equations, including those with constant coefficients and Cauchy-Euler equations.	Ap	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Analyse and solve partial differential equations, including separable ones, and comprehend Fourier series and their applications in solving differential equations and understanding periodic function	An	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Apply complex number theory, including arithmetic operations, polar forms, powers, roots, sets in the complex plane, functions of a complex variable, and Cauchy-Riemann equations, to analyze and solve real-world problems in various fields.	Ap	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

[#] - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text Book		nced Engineering Mathematics(6/e) : Dennis G Zill, Jones & Ba 2018)ISBN: 978-1-284-10590-2	rtlett, I	Learning,
Module	Unit	Content	Hrs 60	External Marks (70)
		Foundations of Differential Equations		
	1	Introduction to Differential Equations Section 1.1: Definitions and Terminology Introduction, A Definition, Classification by Type, Notation, Classification by Order Classification by Linearity, Solution.		
	2	Section 2.2: Separable Equations Introduction, A Definition, Method of Solution.		
I	3	Section 2.3: Linear Equations Introduction, A Definition, Standard Form, Method of Solution, An Initial Value Problem	10	
	4	Section 2.4: Exact Equations Introduction, Differential of a Function of Two Variables (Definition 2.4.1 and Theorem 2.4.1 only), Method of Solution.		Min 15
	5	Section 2.4: Exact EquationsIntegrating Factors		
	6 Section 2.5: Solutions by Substitutions Bernoulli's Equation			
		Linear Differential Equations		
	7	Section 3.1: Theory of Linear Equations 3.1.2 Homogenous Equations, Linear Dependence and Independence, Solutions of Differential Equations,		
II	8	Section 3.1: Theory of Linear Equations 3.1.3 Nonhomogeneous Equations, Complementary Function		
	9	Section 3.3: Homogeneous Linear Equations with Constant Coefficients Introduction, Auxiliary Equation.	11	Min 15
	10	Section 3.4: Undetermined Coefficients Introduction, Method of Undetermined Coefficients (Topics up to and including Example 4.)		
11		Section 3.6: Cauchy-Euler Equations Cauchy-Euler Equation (Second Order Only), Method of Solution.		
		Fourier Series		
	12	Section 12.2: Fourier Series Trigonometric Series (Definition 12.2.1 onwards), Convergence of a Fourier Series, Periodic Extension		Min 15
III	13	Section 12.3: Fourier Cosine and Sine Series Introduction, Even and Odd Functions, Properties, Cosine and Sine Series (Definition 12.3.1 onwards).	13	

1.4	Section 12.3: Fourier Cosine and Sine Series	
14	Half-Range Expansions.	

		Section 13.1: Separable Partial Differential Equations					
	15	Introduction, Linear Partial Differential Equation, Solution of					
		a PDE, Separation of Variables.					
		Section 13.1: Separable Partial Differential Equations					
	16	Classification of Equations.					
		Introduction to Complex Analysis					
		Section 17.1: Complex Numbers					
	17	Introduction, A definition, Terminology, Arithmetic					
		Operations, Conjugate, Geometric Interpretation					
		Section 17.2: Powers and Roots					
	18	Introduction, Polar Form, Multiplication and Division,					
		Integer Powers of z.					
		Section 17.2: Powers and Roots					
IV	19	DeMoivre's Formula, Roots.					
- '		Section 17.3: Sets in the Complex Plane	14	Min 15			
	20	Introduction, Terminology.	1-7				
		Section 17.4: Functions of a Complex Variable					
	21	Introduction, Functions of a Complex Variable, Limits and					
	21	Continuity, Derivative, Analytic Functions.					
		Section 17.5: Cauchy- Riemann Equations					
	22	Introduction, A Necessary Condition for Analyticity,					
	22	Harmonic Functions, Harmonic-Conjugate Functions.					
		Module V (Open Ended)	12				
		Initial Value Problems	12				
		Differential Equations as Mathematical Models					
		Method of Variation of Parameters in solving DE					
V		Solving DE with the Runge-Kutte Method					
V		Interpolation, Extrapolation					
		Classical PDEs and Boundary Value Problems					
		Heat Equation					
		Wave Equation					
		Fourier Transform					
		Fourier Transform					
Refere	ences						
	1	Advanced Engineering Mathematics, Erwin Kreyszig, 8 th Editi	on, W	iley			
		Student Edition.					
	2	Mathematics For Engineers and Scientist, Alan Jeffrey, Sixth E	dition				
	3	Complex Analysis A First Course with Applications (3/e), Den	nis Zil	1 & Patric			
	Shanahan Jones and Bartlett, Learning (2015) ISBN 1-4496-9461-6						

Note: Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	3	3	1	2
CO 2	3	1	3	2	3	3	3	1	2
CO 3	3	2	3	2	3	3	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	>	>	√
CO 2	✓	✓	√	√	✓
CO 3	√	√	√	✓	✓

Programme	B.Sc. Mathema	B.Sc. Mathematics Honours						
Course Code	MAT1MN103							
Course Title	BASIC CALC	BASIC CALCULUS						
Type of Course	Minor							
Semester	I							
Academic	100 – 199							
Level								
Course Details	Credit	Lcture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	4 - 60						
Pre-requisites Bas	ic Set The o	ry including functions and tl	neir algebraic o	perations.				
Course	This course pro	vides a comprehensive expl	oration of calcu	ulus and its				
Summary	11	begins with fundamental co	1 0 1					
		ns, laying the groundwork fo						
		tion techniques, including pr	-					
		derivatives of inverse functi						
	`	as Rolle's and Mean Value	, ,	\mathcal{C}				
		lores integral calculus, cove	•					
	· ·	calculus, numerical integration techniques (like the Trapezoidal Rule and						
	-	e), and introduces hyperbolic	functions and	their derivatives and				
	integrals.							

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply graphical analysis skills to mathematical models:	Ap	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Evaluate and solve calculus problems involving limits and continuity	Е	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Apply differentiation and integration techniques to analyse functions:	Ap	Р	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Module I	1 2 3 4 5 6	Foundations of Calculus: Graphs, Functions, and Limits A quick review of sections 1.1 and 1.2 (not for external exam) Section 1.3 – Functions and their Graphs Section 1.5: Inverse Functions - Inverse Functions, Existence of an Inverse Function Section 1.6: Exponential and Logarithmic Functions - Exponential Functions, The Number e, The Natural Logarithmic Function Section 2.2: Finding Limits Graphically and Numerically - An Introduction to Limits, Limits That Fail to Exist, A Formal Definition of Limit (examples are optional topics) Section 2.3: Evaluating Limits Analytically - Properties of Limits, A Strategy for Finding Limits,	Hrs (48 +12)	Ext. Marks (70)
I -	3 4 5	A quick review of sections 1.1 and 1.2 (not for external exam) Section 1.3 – Functions and their Graphs Section 1.5: Inverse Functions - Inverse Functions, Existence of an Inverse Function Section 1.6: Exponential and Logarithmic Functions - Exponential Functions, The Number e, The Natural Logarithmic Function Section 2.2: Finding Limits Graphically and Numerically - An Introduction to Limits, Limits That Fail to Exist, A Formal Definition of Limit (examples are optional topics) Section 2.3: Evaluating Limits Analytically - Properties of Limits, A Strategy for Finding Limits,	13	Min 15
I	3 4 5	A quick review of sections 1.1 and 1.2 (not for external exam) Section 1.3 – Functions and their Graphs Section 1.5: Inverse Functions - Inverse Functions, Existence of an Inverse Function Section 1.6: Exponential and Logarithmic Functions - Exponential Functions, The Number e, The Natural Logarithmic Function Section 2.2: Finding Limits Graphically and Numerically - An Introduction to Limits, Limits That Fail to Exist, A Formal Definition of Limit (examples are optional topics) Section 2.3: Evaluating Limits Analytically - Properties of Limits, A Strategy for Finding Limits,	13	Min 15
I	3 4 5	Section 1.5: Inverse Functions - Inverse Functions, Existence of an Inverse Function Section 1.6: Exponential and Logarithmic Functions - Exponential Functions, The Number e, The Natural Logarithmic Function Section 2.2: Finding Limits Graphically and Numerically - An Introduction to Limits, Limits That Fail to Exist, A Formal Definition of Limit (examples are optional topics) Section 2.3: Evaluating Limits Analytically - Properties of Limits, A Strategy for Finding Limits,	13	Min 15
I -	3 4 5	Inverse Functions, Existence of an Inverse Function Section 1.6: Exponential and Logarithmic Functions - Exponential Functions, The Number <i>e</i> , The Natural Logarithmic Function Section 2.2: Finding Limits Graphically and Numerically - An Introduction to Limits, Limits That Fail to Exist, A Formal Definition of Limit (examples are optional topics) Section 2.3: Evaluating Limits Analytically - Properties of Limits, A Strategy for Finding Limits,	13	Min 15
I –	5	Section 1.6: Exponential and Logarithmic Functions - Exponential Functions, The Number <i>e</i> , The Natural Logarithmic Function Section 2.2: Finding Limits Graphically and Numerically - An Introduction to Limits, Limits That Fail to Exist, A Formal Definition of Limit (examples are optional topics) Section 2.3: Evaluating Limits Analytically - Properties of Limits, A Strategy for Finding Limits,	13	Min 15
I –	5	Exponential Functions, The Number <i>e</i> , The Natural Logarithmic Function Section 2.2: Finding Limits Graphically and Numerically - An Introduction to Limits, Limits That Fail to Exist, A Formal Definition of Limit (examples are optional topics) Section 2.3: Evaluating Limits Analytically - Properties of Limits, A Strategy for Finding Limits,	13	Min 15
I -	5	Function Section 2.2: Finding Limits Graphically and Numerically - An Introduction to Limits, Limits That Fail to Exist, A Formal Definition of Limit (examples are optional topics) Section 2.3: Evaluating Limits Analytically - Properties of Limits, A Strategy for Finding Limits,	13	Min 15
I –	5	Section 2.2: Finding Limits Graphically and Numerically - An Introduction to Limits, Limits That Fail to Exist, A Formal Definition of Limit (examples are optional topics) Section 2.3: Evaluating Limits Analytically - Properties of Limits, A Strategy for Finding Limits,	13	Min 15
	5	An Introduction to Limits, Limits That Fail to Exist, A Formal Definition of Limit (examples are optional topics) Section 2.3: Evaluating Limits Analytically - Properties of Limits, A Strategy for Finding Limits,		Min 15
_		Definition of Limit (examples are optional topics) Section 2.3: Evaluating Limits Analytically - Properties of Limits, A Strategy for Finding Limits,	-	
		Section 2.3: Evaluating Limits Analytically - Properties of Limits, A Strategy for Finding Limits,	-	•
	6	Properties of Limits, A Strategy for Finding Limits,		
_	6	<u> </u>		
		Section 2.3: Evaluating Limits Analytically -	1	
		Dividing Out Technique, Rationalizing Technique, The Squeeze		
		Theorem		
		Continuity, Derivatives, and Differentiation Rules		
	7	Section 2.4: Continuity and One-Sided Limits -		
		Continuity at a Point and on an Open Interval, Properties of		
		Continuity, The Intermediate Value Theorem.		
	8	Section 3.1: The Derivative and the Tangent Line Problem -		
<u> </u>	0	The Derivative of a Function, Differentiability and Continuity		
	9	Section 3.2: Basic Differentiation Rules and Rates of Change – The		
II		Constant Rule, The Power Rule, The Constant Multiple Rule, The Sum and Difference Rules	12	
"	10	Section 3.2 : Basic Differentiation Rules – rest of the section.	-	Mn 15
	11	Section 3.3: Product and Quotient Rules and Higher Order		14111 13
	11	Derivatives -		
		The Product Rule, The Quotient rule, Higher- Order Derivatives		
	12	Section 3.4 The Chain Rule.		
	13	Section 3.5: Implicit Differentiation		
		Implicit and Explicit Functions, Implicit Differentiation,		
		Logarithmic Differentiation		
	Ap	plications of Derivatives: Extrema, Concavity, and Curve Sketching		
	14	Section 4.1: Extrema on an Interval -		
		Extrema of a Function, Relative Extrema and Critical Numbers,		Min 15
		Finding Extrema on a Closed Interval		
III	15	Section 4.2: Rolle's Theorem and The Mean Value Theorem -		
_	1.0	Rolle's Theorem, The Mean Value Theorem	12	
	16	Section 4.3: Increasing and Decreasing Functions and The First		
		Derivative Test - Increasing and Decreasing Functions. The First Derivative Test		
	17	Increasing and Decreasing Functions, The First Derivative Test Section 4.4: Concavity and the Second Derivative Test -	-	

		Concavity, Points of Inflection, The Second Derivative Test		
	18	Section 4.6: A summary of Curve Sketching -		
		Analyzing the Graph of a Function		
		Integral Calculus: Fundamental Theorems and Applications"		
	19	Section 5.1: Antiderivatives and Indefinite Integration –		
		Antiderivatives, Basic Integration Rules, Initial Conditions and		
	Particular Solutions.			
	20	Section 5.3: Reimann Sums and Definite Integrals – Reimann		
IV		Sums, Definite Integrals, Properties of Definite Integrals.		
	21	Section 5.4: The Fundamental Theorem of Calculus -	11	Min 15
		The Fundamental Theorem of Calculus, The Mean Value Theorem		
		for Integrals.		
	22	Section 5.4: The Fundamental Theorem of Calculus -		
		Average Value of a Function, The Second Fundamental Theorem		
		of Calculus, Net Change Theorem		
		Open Ended		
	One S	Sided Limits and Discontinuity, Derivatives of Inverse Functions,		
\mathbf{v}	Derivatives of Trigonometric functions, Limits at Infinity and Horizontal			
•	Asyn	nptotes, Numerical Integration, Area problems using Riemann Sums,	12	
	Hype	rbolic Functions.		

References:

- 1. Calculus, Soo T. Tan, First Edition, Brooks/Cole, Cengage Learning, 2011.
- 2. Calculus & Analytic Geometry, (9/e), George B. Thomas & Ross L. Finney, Pearson Publications
- 3. Calculus, (7/e), Howard Anton, Biven, & Stephen Davis, Wiley India
- 4. Calculus, (7/e)., Howard Anton, Biven, & Stephen Davis, Wiley India.
- 5. Calculus: Early Transcendentals, (4/e), Dennis G. Zill and Warren S. Wright

Note: 1) Optional topics are exempted for end semester examination.

2) Proofs of all the results are also exempted for the end semester exam.,

Mapping of ${\bf COs}$ with ${\bf PSOs}$ and ${\bf POs}$:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	1	3	1	3	1	2
CO 3	2	1	3	1	3	2	3	1	2

Correlation Levels:

Level Correlation			
-	Nil		
1	Slightly / Low		
2	Moderate / Medium		
3	Substantial / High		

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	√	>	√
CO 2	√	√	√	√	~
CO 3	√	√	√	√	√

Programme	B.Sc. Mathema	B.Sc. Mathematics Honours					
Course Code	MAT2MN103						
Course Title	ANALYSIS AN	ND SOME COUNTING P	PRINCIPLES				
Type of Course	Minor						
Semester	II						
Academic	100 - 219						
Level							
Course Details	Credit	Lecture/Tutorial	Practicum	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Basic Calculus a	and familiarity with Real N	umber system.				
Course	This course co	overs fundamental topics	in calculus an	d complex analysis,			
Summary	beginning with	sequences and series in M	Iodule I, explori	ng convergence tests			
		n test, comparison tests, an					
		umbers and functions, disc					
		omplex numbers, along w	-	-			
	Module III, the focus shifts to limits, continuity, and differentiability of complex						
		uding the Cauchy-Riemann	•				
		le IV introduces counting					
	combinations, t	he pigeonhole principle, an	d basic element	s of probability.			

CO	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Describe and apply convergence tests for sequences and series.	Ap	P	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO2	Demonstrate proficiency in manipulating complex numbers and functions.	Ap	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam
CO3	Evaluate limits, continuity, and differentiability of real and complex functions.	Е	С	Internal Exam/Assignment/ Seminar/ Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text Book		 Calculus: Early Transcendental Functions (6/e), Ron Larson and Edwards, Cengage Learning ISBN 13: 978-1-285-77477-0. Complex Analysis A First Course with Applications (3/e), Denn Shanahan Jones and Bartlett, Learning (2015) ISBN 1-4496-94 Discrete Mathematical Structures (6/e), Bernard Kolman, Robe Sharon C. Ross, Pearson ISBN 978-93-325-4959-3 	is Zill & -61-6			
Module	Unit					
		Sequences and Series (Text 1)		, ,		
	1	1 Section 9.1: Sequences - Sequences (sub section), Limit of a Sequence, Monotonic Sequences and Bounded Sequences.				
	2	Section 9.1: Sequences Monotonic Sequences and Bounded Sequences		Min 15		
I	3	Section 9.2: Series and Convergence - Infinite Series, Geometric Series, nth-Term Test for Divergence	13			
	4	Section 9.3: The Integral Test and p-Series - The Integral Test, p-series and Harmonic Series	13			
		5 Section 9.4: Comparisons of Series - Direct Comparison Test, Limit Comparison Test				
	6	Section 9.5: Alternating Series - Alternating Series (sub section), Alternating Series Remainder, Absolute and conditional Convergence				
		Absolute and conditional Convergence Complex Numbers (Text 2)				
	7	Section 1.1: Complex numbers and their Properties - The Imaginary Unit, Terminology, Arithmetic Operations, Zero and Unity, Conjugate, Inverses				
	8	Section 1.2: Complex Plane - Complex Plane, Vectors, Properties, Distance Again, Inequalities				
II	9	Section 1.3: Polar Form of Complex Numbers - Polar Form, Principal Argument, Multiplication and Division, Integer Powers of z, de Moivre's Formula		Min		
	10	Section 1.4: Powers and Roots - Roots, Principal nth Root	13	15		
	11	Section 1.5: Sets of Points in the Complex Plane - Circles, Disks and Neighborhoods, Open Sets, Annulus, Domain, Regions, Bounded Sets				
	12					
		Function, Exponential Function Complex Analysis (Text 2)				
ш	13	Section 3.1: Limits and Continuity - Introduction, Real Limits, Complex Limits (definition only), Real Multivariable Limits (Example 2 and Problems Using Epsilon Delta Definition are optional)				
	14	Section 3.1: Limits and Continuity -				

		Continuity of Real Functions, Continuity of Complex Functions	12	Min		
		(Example 6 is optional), Properties of Continuous Functions.		15		
	15	Section 3.2: Differentiability and Analyticity -				
	16					
	17					
		Condition for Analyticity				
	18	Section 3.4: Harmonic Functions				
		Introduction, Harmonic Functions, Harmonic Conjugate Functions				
		Introduction to Counting and Probability Theory (Text 3)				
	19					
	20					
IV		Section 3.2 - Combinations	10	Min		
	21	Chapter 3: Counting	10	15		
		Section 3.3 – Pigeonhole Principle				
	22	Chapter 3: Counting				
		Section 3.4 – Elements of Probability				
		Open Ended				
		rn Recognition for Sequences, Rearrangement of Series, The Ratio				
\mathbf{V}		The Root Test, Taylor Polynomials and Approximations, Power	12			
	Serie	12				
	Linea	r Mappings, Special Power Functions, Relations and Di Graphs.				

References:

- 1. Calculus, Soo T. Tan, First Edition, Brooks/Cole, Cengage Learning, 2011.
- 2. Calculus & Analytic Geometry, (9/e)., George B. Thomas & Ross L. Finney, Pearson Publications.
- 3. Calculus, (7/e), Howard Anton, Biven, & Stephen Davis, Wiley India.
- 4. Calculus: Early Transcendentals, (4/e)., Dennis G. Zill and Warren S. Wright.
- 5. Advanced Engneering Mathematics, (10/e), Erwin Kreyszig, John Wiley and Sons.
- 6.Complex Variables and Applications, (8/e), James Brown and Ruel Churchill, McGraw-Hill International (UK) Ltd
- 7. Discrete Mathematics, (6/e), Richard Johnsonbaugh, Pearson

Note: 1) Optional topics are exempted for end semester examination.

2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	1	1	3	0	0
CO 2	2	1	2	1	1	1	2	0	0
CO 3	2	1	2	1	1	1	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	>	>	√
CO 2	✓	✓	√	√	✓
CO 3	√	√	√	✓	✓

Programme	B.Sc. Mathematics Honours						
Course Title	MATRIX ALGEBRA AND VECTOR CALCULUS						
Course Code	MAT3MN203						
Type of Course	Minor						
Semester	III						
Academic Level	200 – 299	200 – 299					
Course Details	Credit Lecture/Tutorial Practical Total Hours						
		per week	per week				
	4	4	-	60			
Pre-requisites	Basic Calculus and	d familiarity with Euclidian	Geometry.				
Course Summary	This course covers fundamental concepts in vectors, vector calculus, and matrices. Students will explore vectors in 2-space and 3-space, including dot and cross products, as well as lines and planes in 3-space. The vector calculus portion includes vector functions, partial and directional derivatives, tangent planes, normal lines, curl, divergence, line integrals, double integrals, surface integrals, and triple integrals. Additionally, the course delves into matrix						
		linear equations, matrix ran					

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Discuss the geometry of Vectors in	U	С	Internal Exam/
	two- and three-dimensional spaces			Assignment/ Seminar/
				Viva / End Sem Exam
CO2	Discuss the basic concepts of	Ap	P	Internal
	matrices, and evaluate the solutions			Exam/Assignment/
	of system of linear equations using			Seminar/ Viva / End
	matrices.			Sem Exam
CO3	Describe the idea of eigen values	U	С	Internal Exam/
	and eigen vectors.			Assignment/ Seminar/
				Viva / End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

⁻ Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text: Advanced Engineering Mathematics, 6 th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2.				
Module	Unit	Content	Hrs (60)	Ext. Marks (70)
I		Vectors		
	1	Secction 7.1-Vectors in 2 -Space (quick review)		
	2	Section 7.2-Vectors in 3-Space (quick review)	11	Min. 15
	3	Section 7.3- Dot Product up to and including Example 5		
	4	Section 7.4- Cross Product up to and including Example 3		
	5	Section 7.5- Lines and Planes in 3-space- upto and including Example 6		
	6	Section 7.5- Lines and Planes in 3-space- From Planes: Vector Equation onwards		
II		Vector Calculus		
	7	Section 9.1 – Vector Functions		
	8	Section 9.4 – Partial Derivatives		
	9	Section 9.5 – Directional Derivative – upto and including Example 4.	15	Min. 15
	10	Section 9.5 – Functions of Three Variables onwards.		
	11	Section 9.6 – Tangent Planes and Normal Lines – upto and including Example 4		
	12	Section 9.6 – Topics from Normal Line onwards		
	13	Section 9.7 – Curl and Divergence -		
III		Vector Calculus – contd.		
	14	Section 9.8 – Line Integrals – upto and including Example 5.		Min. 15

	15	Section 9.10 – Double Integrals – upto and including Example2	12	
	16	Section 9.13 – Surface Integrals – upto and including Example4		
	17	Section 9.15 – Tripple Integrals (Examples 5 and 7 are optional)		
IV		Matrices		
	18	Section 8.1- Matrix Algebra.		
	19	Section 8.2-Systems of Linear Algebraic Equations. Up to and including Example 7	10	Min. 15
	20	Section 8.2-Systems of Linear Algebraic Equations. From Homogeneous Systems onwards till end omit chemical equations		
	21	Section 8.3 -Rank of a Matrix.		
	22	Section 8.8-The Eigenvalue ProblemUp to and including Example 4		
V		Open Ended	12	
		Vector Spaces, Gram-Schmidt Orthogonalization(for instance, refer sections 7.6 and 7.7) Green's Theorem, Stocke's Theorem and Divergence Theorem (for instance, refer sections 9.12, 9.14 and 9.16) Complex Eigen Values Eigen Values and Singular Matrices. Eigen Values and Eigen Vectors of inverse of A Improper Integrals, Beta and Gama Functions		
	References:			
		1. Calculus and Analytic Geometry (9 th Edn), George B		
		Thomas, Jr. and Ross L Finney, Addison -Wesley Publishing Company.		
		2. A Freshman Honors Course in Calculus and Analytic		
		Geometry, Emil Artin (Author), Marvin J Greenberg		
		(Foreword).		

	3. Advanced Engineering Mathematics (10 th Edn), Erwin		
	Kreyszig, John Wiley and Sons.		
	4. Improper Riemann Integrals: Ioannis M. Roussos CRC		
	Press by Taylor & Francis Group, LLC(2014) ISBN:		
	978-1-4665-8808-0 (ebook -pdf)		
			l

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	2	3	3	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar Viv		End Semester Examinations
CO 1	√	√	>	>	✓
CO 2	√	√	√	>	✓
CO 3	√	√	√	✓	✓

Programme	B.Sc. Mathema	B.Sc. Mathematics Honours						
Course Code	MAT1MN104	MAT1MN104						
Course Title	MATHEMAT	FICAL LOGIC, SET THE	ORY AND CO	MBINATORICS				
Type of Course	Minor							
Semester	I							
Academic Level	100 - 199							
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites	Higher Second	ary Mathematics.						
Course	This course e	xplores mathematical logic	, set theory, a	and combinatorics,				
Summary	covering fund	amental ideas like proposi	itions, logical	equivalences, and				
	quantifiers. It introduces set theory concepts such as sets, operations with sets,							
	and cardinality. Additionally, it delves into functions and matrices, along with							
	topics like per	mutations, combinations, ar	nd discrete prol	bability in				
	combinatorics.							

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools used
		Level*	Category#	
CO1	Analyse propositional logic and	An	P	Internal
	equivalences			Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
CO2	Apply set theory and operations	Ap	С	Internal
				Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam
CO3	Implement functions, matrices,	Ap	P	Internal
	and combinatorics	_		Exam/Assignment/
				Seminar/ Viva / End
				Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text: Discrete Mathematics with Applications, (1/e), Thomas Koshy, Academic Press (2003), ISBN: 978-0124211803.

Module	Unit	Unit Content				
		+12)	(70)			
I	Mathematical Logic 1			Min. 15		
	6	1.4 Arguments: Valid and Invalid arguments, (Example 1.33 is optional)				
II		Set Theory				
	7	2.1 The Concept of a Set - up to and including example 2.7 (Example 2.6 is optional).				
	8	2.1 The Concept of a Set - finite and infinite sets (Topics from the Hilbert Hotel paradoxes onwards are optional).		3.61		
	9	2.2 Operations with Sets – up to and including example 2.21.	12	Min. 15		
	10	2.2 Operations with Sets – Cartesian product (Fuzzy sets, Fuzzy subsets and operations on fuzzy sets are optional).				
	11	2.4 The Cardinality of a Set (Theorem 2.2 and Algorithm subsets are optional).				
III		Functions and Matrices				

	12	3.1. The Concept of Functions - up to and including example 3.2	10	Min.		
	13	3.1. The Concept of Functions – Piecewise definition, sum and product (Example 3.7 is optional).		15		
	14	3.2 Special Functions – up to and including example 3.13 (Proof of Theorems 3.1 and 3.2 are optional).				
	3.2 Special Functions- Characteristic function, Mod and Div functions (Theorem 3.3, Code dealing and The two Queens Puzzle are optional).					
	16	3.7 Matrices (Proof of theorem 3.12, algorithm product are optional).				
IV		Combinatorics and Discrete Probability				
	17	6.1 The Fundamental Counting Principles (Example 6.7 is optional)				
	18	6.2 Permutations - up to and including example 6.13 (Proof of theorem 6.4 is optional)				
	19	6.2 Permutations - Cyclic permutations (Theorem 6.7 and Fibonacci numbers revisited are optional)	11	Min. 15		
	20	6.4 Combinations (Proof of theorem 6.10, example 6.22, theorem 6.12 and example 6.26 are optional)				
	21	6.8 Discrete Probability- up to and including example 6.49 (Examples 6.45 and 6.47 are optional)				
	22	6.8 Discrete Probability- Mutually exclusive events (Proof of theorem 6.20 is optional)				
V			12			
		Open Ended				
	 Basic calculus concepts such as limits, continuity, differentiation and integration. Relations and Digraphs, Conditional Probability, Multiplicatheorem of Probability, Dependent and Independent Events, Probability Distributions, Correlation and Regression, Bisection Method, Regula-F Method, Gauss-Jordan Method. 					

- 1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007).
- 2. Discrete Mathematics with Applications(4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011).
- 3. Discrete Mathematics, Gary Chartrand, Ping Zhang, Waveland Press (2011).

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	2	1	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	>	>	√
CO 2	✓	✓	√	√	✓
CO 3	√	√	√	√	✓

Programme	B.Sc Mathematics Honours						
Course Code	MAT2MN104						
Course Title	GRAPH THE	ORY AND AUTOMATA					
Type of Course	Minor						
Semester	II						
Academic Level	100 - 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
Course Details	Credit	Lecture/Tutorial	Fractical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Higher Second	ary Mathematics					
Course	This course int	roduces students to Graph Th	neory and Autor	mata, covering			
Summary	topics such as	graphs, adjacency matrice	s, and isomorp	ohic graphs in			
	Module I. In	Module II, it explores Euler	rian and Hamil	tonian graphs,			
	including path	s, cycles, and connected gr	aphs. Module	III focuses on			
	Planar Graphs	, Graph Coloring, Trees, a	and Spanning	Γrees. Finally,			
	Module IV de	elves into Automata, coverin	ng concepts lik	te formal			
	languages, gran	mmars, and finite state autom	iata.				

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse Graph Structures and	Е	С	Internal
	Properties			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
CO2	Apply Algorithms to Eulerian and	Ap	P	Internal
	Hamiltonian Graphs			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
CO3	Explore Formal Languages and	Е	С	Internal
	Finite State Automata			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text: Discrete Mathematics with Applications, Thomas Koshy, Academic Press (2003), ISBN: 978-0124211803.

Module	Unit	Hrs	Ext.		
			(48	Marks	
		+12)	(70)		
I		Graphs			
	1	8.1 Graphs - Graph, Simple Graph (Example 8.3 is optional).			
	2				
	3	8.1 Graphs – Subgraph of a Graph.	14	Min. 15	
	4 8.1 Graphs - Complete Graph, Cycle and Wheel Graphs (Fibonacci and Paraffins, Lucas and Cycloparaffins are optional).				
	5 8.3	Graphs - Bipartite graph, Complete Bipartite Graph, Weighted Graph (Graphs and Telecommunications, Graphs and Local Area Networks and A Generalised Handshake Problem are optional).			
	6	8.3 Isomorphic Graphs.			
II		Eulerian and Hamiltonian graphs			
	7			Min.	
	8	8.4 Paths, Cycles and Circuits – Connected Graphs (Proof of theorem 8.3, 8.5, example 8.20 and example 8.21 are optional).		15	
	9	8.5 Eulerian and Hamiltonian graphs- Eulerian Graph (Proof of theorem 8.7, example 8.26, Algorithm Eulerian graph, example 8.27, Algorithm Eulerian circuit, proof of theorem 8.8, example 8.31).			

	10	8.5 Eulerian and Hamiltonian graphs- Hamiltonian Graph (Knight's tour problem, example 8.34, Travelling Salesperson Problem, Example 8.35 are optional)		
III		Planar Graphs and Trees		
	11	8.6 Planar Graphs- Planar Graph (Proofs of theorems 8.11 and 8.12 are optional).		
	12	8.6 Planar Graphs- Degree of a Rregion, Homeomorphic Graphs.	11	Min.
	13	8.7 Graph Coloring- Graph Coloring, Chromatic Number, The Four-Color Problem (Example 8.27 is optional).		15
	14	9.1 Trees- Trees (Proof of theorem 9.1 and 9.2 are optional).		
	15 9.2 Spanning Trees - Spanning Trees, Kruskal's Algorithm for a Spanning Tree.			
IV		Automata		
	16	2.1 The Concept of Sets – Alphabet, Length of a Word, Language, Concatenation.		
	17	11.1 Formal Languages - Equality of Words, Concatenation of Languages (Examples 11.2, 11.3, 11.5 and Proof of Theorem 11.1 are optional).	13	Min.
	18	11.1 Formal Languages – Kleene Closure.		15
	19	11.2 Grammars – Grammars, Phase Structure Grammar.		
	20	11.2 Grammars – Derivation and Language.		
	21	11.3 Finite State Automata – up to and including Example 11.30 (Example 11.27 is optional).		
	22 11.3 Finite State Automata – Equivalent Finite State Automata up to and including example 11.35.			
V		Open Ended Module	12	
	_	puter representation of graphs, minimal spanning trees, rooted phs and Finite state machines	d trees,	

- 1. Discrete Mathematics and Its Applications (7/e), Kenneth H. Rosen, McGraw-Hill, NY (2007).
- 2. Discrete Mathematics with Applications (4/e), Susanna S Epp, Brooks/ Cole Cengage Learning (2011).
- 3. A First Look at Graph Theory, John Clark and Allan Holton, Allied Publishers (1991).

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	2	1	1	0	3	0	0
CO 2	2	1	2	0	1	1	2	0	0
CO 3	2	1	2	0	1	1	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar Viva		End Semester Examinations
CO 1	√	~	√	\	✓
CO 2	✓	✓	√	✓	✓
CO 3	✓	√	√	√	✓

Programme	B. Sc. Mathematics Honours							
Course Code	MAT3MN204							
Course Title	BOOLEAN A	BOOLEAN ALGEBRA AND SYSTEM OF EQUATIONS						
Type of Course	Minor							
Semester	III							
Academic Level	200-299							
Course Details	Credit	Credit Lecture/Tutorial Practical Total						
		per week	per week					
	4	4	-	60				
Pre-requisites	MAT1MN203	and MAT2MN203	•					
Course	This course co	omprises four main module	es: Lattice, Boo	olean Algebra,				
Summary	System of Ed	quations, and Eigenvalue a	and Eigenvecto	ors. Module I				
	introduce conc	epts like ordered sets and latt	ices, while Mod	dule II explores				
	Boolean Algeb	ra and its applications. Modu	ıle III covers lir	near systems of				
	equations, inclu	uding Gauss elimination and	determinants. F	inally, Module				
	IV delves into	Eigenvalue and Eigenvectors	s, offering insig	hts into matrix				
	properties and	applications.						

Course Outcome

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse Lattices and Boolean	Е	С	Internal
	Algebra			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
CO2	Apply Matrix Operations and	Ap	P	Internal
	Linear Systems			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam
CO3	Investigate Eigenvalue and	An	P	Internal
	Eigenvector Problems			Exam/Assignment/
				Seminar/ Viva /
				End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Textbook	 Theory and Problems of Discrete mathematics (3/e), Seymour Lipschutz, MarcLipson, Schaum's Outline Series. Advanced Engineering Mathematics (10/e), Erwin Kreyzsig, Wiley India. 							
Module								
I		Lattice (Text 1)	12	Min 15				
	1	14.2 Ordered set						
	2	14.3 Hasse diagrams of partially ordered sets						
	3	14.5 Supremum and Infimum						
	4	14.8 Lattices						
	5	14.9 Bounded lattices, 14.10 Distributive lattices						
	6							
II		Boolean Algebra (Text	10	Min 15				
	7	15.2 Basic definitions	1					
	8	15.3 Duality						
	9	15.4 Basic theorems	1					
	10	15.5 Boolean algebra as lattices						
	11	15.8 Sum and Product form for Boolean algebras						
	12	15.8 Sum and Product form for Boolean algebras - Complete Sum and Product forms						
III		System of Equations (Text 2)	14	Min 15				
	13	7.1 Matrices, Vectors: Addition and Scalar Multiplication						
	14	7.2 Matrix Multiplication (Example 13 is optional)						
	15	7.3 Linear System of Equations- Gauss Elimination						
	16	7.4 Linear Independence- Rank of a matrix- Vector Space(Proof Theorem 3 is optional)						

	17	7.5 Solutions of Linear Systems- Existence, Uniqueness (Proof of Theorem 1, Theorem 2 and Theorem 4 are optional)					
IV		Eigen Value and Eigen Vectors (Text 2)	12	Min 15			
	18	7.6 Second and Third Order Determinants- up to and including Example 1					
	19						
	20						
	21						
	22	8.1 The Matrix Eigenvalue Problem- Determining Eigenvalues and Eigenvectors (Proof of Theorem 1 and Theorem 2 are optional)					
V		Open Ended Module	12				
	Relation on a set, Equivalence relation and partition, Isomorphic ordered sets, Wordered sets, Representation theorem of Boolean algebra, Logic gates, Symme Skew-symmetric and Orthogonal matrices, Linear Transformation.						

- 1. Howard Anton & Chris Rorres, Elementary Linear Algebra: Application (11/e): Wiley
- 2. Ron Larson, Edwards, David C Falvo: Elementary Linear Algebra (6/e), Houghton Mi_in Harcourt Publishing Company (2009)
- 3. Thomas Koshy Discrete Mathematics with Applications-Academic Press (2003)
- 4. George Gratzer, Lattice theory: First concepts and distributive lattices. Courier Corporation (2009)

Note: 1) Optional topics are exempted for end semester examination. 2) Proofs of all the results are also exempted for the end semester exam.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	1	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	nment Seminar V		End Semester Examinations
CO 1	√	√	>	>	✓
CO 2	√	√	√	✓	√
CO 3	√	√	√	✓	√

Programme	B. Sc. Mathematics Honours						
Course Title	MATRIX THEO	MATRIX THEORY					
Course Code	MAT1MN105						
Type of Course	Minor						
Semester	I						
Academic Level	100 – 199						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Higher Secondary	Algebra					
Course Summary	is course provides	s a comprehensive introduc	tion to linear a	algebra,			
	focusing on system	ns of linear equations, matri	ix algebra, dete	erminants, and			
	Euclidean vector sp	paces. Through a blend of t	heoretical cond	cepts and			
	practical application	ons, students will develop a	a strong found	ation in linear			
	algebra techniques	and their uses in various fie	elds.				

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Understand the fundamental	U	С	Internal
	operations and concepts of systems of			Exam/Assignme
	linear equations, including Gaussian			nt/ Seminar/
	elimination and elementary row			Viva / End Sem
	operations, leading to an			Exam
	understanding of matrix algebra			
CO2	Apply the properties of determinants	Ap	P	Internal Exam/
	to evaluate them using cofactor			Assignment/
	expansions and row reduction			Seminar/ Viva/
	techniques, and comprehend the			End Sem Exam
	relationships between matrices and			
	determinants.			
CO3	Explore the geometry and properties	An	С	Internal Exam/
	of Euclidean vector spaces, including			Assignment/
	norms, dot products, distances,			Seminar/ Viva/
	orthogonality, and the cross product.			End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text : Howard Anton and Chriss Rorres, Elementary Linear Algebra (11/e), Applications version, Wiley

Mo ule		Content	Hrs (48 +12)	Ext. Marks (70)			
I		System Of Linear Equations					
	1	Section 1.1: -Introduction to systems of linear equations – up to					
		andincluding Example 5					
	2	Section 1.1: - Rest of the section.					
	3	1.2 :- Gaussian Elimination – up to Example 5					
	4	Section 1.2; - From Example 5 onwards.					
	5	Section 1.3: - Matrices and Matrix Operations – up to and					
	6	includingExample 7. Section 1.3; - Rest of the section.					
II	0	Matrix Algebra	12				
11	7	Section 1.4: - Inverses; Algebraic Properties of Matrices - up to	14				
	_ ′	andincluding Example 6.					
	8	Section 1.4; - Properties of inverses onwards – up to and					
		includingExample 12.					
	9	Section 1.4: - Rest of the section.					
	10	Section 1.5; - Elementary matrices and a method for finding					
		inverse(Proof of Theorem 1.5.3 is optional)					
	11	Section 1.6: - More on Linear systems and Invertible					
		Matrices(Proofs of all the theorems are optional)					
	12	Section 1.7; - Diagonal, Triangular and Symmetric Matrices					
TTT		(Proofof theorem 1.7.1 is optional) Determinants	10				
III	12		12				
	13	Section 2.1 :- Determinants by Cofactor expansions Section 2.2; - Evaluating determinants by row reduction					
	15	Section 2.2; - Evaluating determinants by row reduction Section 2.3: - Properties of determinants; Cramer's Rule – up to and					
	13	including Theorem 3.2.5 (proofs of all the results are optional).					
	16	Section 2.3;- up to and including Example 7.					
	17	Section 2.3; rest of the section.(proofs of all the results					
		areoptional)					
IV		Euclidean Vector Spaces	12				
	18	Section 3.1:- Vectors in 2- space, 3-space and n-space					
	19	Section 3.2:- Norm, dot product and distance in R ⁿ (proofs of all the					
		results are optional).					
	20	Section 3.3: - Orthogonality (proofs of all the results are optional).					
	21	Section 3.4:-The geometry of linear systems.					
	22	Section 3.5:-Cross product (Proof of Theorem 3.5.4 is optional)					
\mathbf{V}	3.5	Open Ended Module	12				
		x Transformations, Combinatorial approach to determinants, Rank of Mareference 1) Orthogonal Matrices (from reference 1)	atrix 				

- 1. Advanced Engineering Mathematics, 6 th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2.
- 2. Advanced Engineering Mathematics, Erwin Kreyzsig, 10 th Edition, Wiley India.
- 3. Linear Algebra and its Applications: 3rd Edition, David C. Lay, Pearson Publications

Note: 1) Optional topics are exempted for end semester examination. (2) Proofs of all the results are exempted for external exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	1	2	2	3	1	2
CO 2	3	2	3	1	2	2	3	1	2
CO 3	2	1	3	1	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	√	✓
CO 2	√	✓	√	✓	✓
CO 3	√	√	√	✓	✓

Programme	B.Sc. Mathema	tics Honours				
Course Code	MAT2MN105	MAT2MN105				
Course Title	VECTOR SPA	CES AND LINEAR TRAN	NSFORMATI	ONS		
Type of Course	Minor					
Semester II						
Academic	100 – 199					
Level						
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	4	-	60		
Pre-requisites	Linear A lgebra	a Course in Semester 1 - Vec	ctors and Matri	ces		
Course	This course del	ves into advanced concepts	in linear algebi	ra, focusing on		
Summary	general vector s	spaces, basis and dimension	, matrix transfe	ormations, and		
	eigenvalues and	l diagonalization. The course	builds on four	ndational linear		
		les and explores their applic	cations in highe	er-dimensional		
	spaces and com	plex transformations.				

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Define and apply concepts related to	U	С	Internal Exam/
	vector spaces, including understanding			Assignment/
	vector space axioms, subspaces, and			Seminar/ Viva/
	the solution space of homogeneous			End Sem Exam
	systems.			
CO2	Explore the concepts of linear	Ap	P	Internal Exam/
	independence, coordinates, basis, and			Assignment/
	dimension within vector spaces,			Seminar/ Viva/
	including computing basis vectors and			End Sem Exam
	understanding coordinate systems			
	relative to a basis.			
CO3	Analyse and apply matrix	An	С	Internal Exam/
	transformations, including basic			Assignment/
	transformations in R2R2 and R3R3,			Seminar/ Viva/
	understanding properties of these			End Sem Exam
	transformations, and exploring			
	concepts related to eigenvalues,			
	eigenvectors, and diagonalization of			
	Amatrices.			

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)# - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text: Howard Anton and Chriss Rorres, Elementary Linear Algebra (11/e), Applications version, Wiley

Wil								
Module	Unit	Content	Hrs (60)	Ext. Marks (70)				
I		12						
	1							
	2	Section 4.1:- Rest of the section.						
	3	Section 4.2: - Subspaces (examples 7, 8 are optional) – up to andExample 10.						
	4	Section 4.2: - From Example 10 to Example 15 (proof of theorem .4.2.3 is optional)						
	5	Section 4.2: - Rest of the section (Linear transformation view pointis optional)						
II		Basis And Dimension	12					
	6	Section 4.3: - Linear independence – up to and including Theorem4.3.3						
	7	Section 4.3: - Rest of the section (proofs of all the results are optional).						
	8	Section 4.4:- Coordinates and Basis - up to and including Example 5						
	9	Section 4.4: - rest of the section from Theorem 4.4.1.						
	10							
	11	Section 4.5: - Rest of the section from Example 3 (proofs of all the theorems are optional).						
III		Matrix Transformations	12					
	12	Section 4.9: - Basic matrix transformations in R ² and R ³⁻ Reflection						
	10	operators, Projection operators						
	13	Section 4.9:- Rotation Operators – Rotation in R ⁻³						
	14	Section 4.9:- Rest of the section.						
	15	Section 4.10: - Properties of Matrix Transformations – up to						
	16	andincluding Example 4. Section 4.10:- rest of the section (proofs of theorems are optional)						
	17	Section 4.11: - Geometry of Matrix Operators on R ² (proof of Theorem 4.11.2 is optional)						
IV		Eigen Values and Diagonalization	12					
	18	Section 5.1:- Eigen values and eigen vectors – up to Theorem 5.1.3						
	19	Section 5.1; -From Theorem 5.1.3 to Example 7 (including)						
	20	Section 5.1: - Rest of the section (Eigen values of general linear						
		transformation is optional)						
	21	Section 5.2: - Diagonalization – up to and including Example						
		4(proofs of theorems are optional)						
	22	Section 5.2; - Rest of the section (Geometric and algebraic						
		multiplicity are optional)						
V		OPEN ENDED	12					
		space, Null space and Rank- Nullity theorem, General Linear						
		formations and Matrix representation, Eigen values of general linear						
	transi	formation, Geometric and algebraic multiplicity.						

- 1 Advanced Engineering Mathematics, 6th Edition, Dennis G. Zill, Jones & Bartlett Learning LLC (2018) ISBN: 978-1-284-10590-2.
- 2. Advanced Engineering Mathematics, Erwin Kreyzsig, 10 th Edition, Wiley India.
- 3. Linear Algebra and its Applications: 3rd Edition, David C. Lay, Pearson Publications

Note: 1) Optional topics are exempted for end semester examination. (2) Proofs of all the results are exempted for external exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	1	3	1	1	1	3	0	0
CO 2	2	1	2	1	1	1	2	0	0
CO 3	2	1	3	1	1	1	3	0	0

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	√	✓
CO 2	√	✓	√	✓	~
CO 3	√	✓	√	√	√

Programme	B.Sc. Mathematics Honours					
Course Code	MAT3MN205	MAT3MN205				
Course Title	OPTIMIZATI	ON TECHNIQUES				
Type of Course	Minor					
Semester	III					
Academic Level	200 - 299					
Course Details	Credit	Lecture/Tutorial	Practical	Total Hours		
		per week	per week			
	4	4	-	60		
Pre-requisites	Basic understar	nding of linear algebra and i	ntroductory opt	imization		
	concepts.					
Course Summary	This course provides a comprehensive exploration of linear programming and optimization techniques, focusing on graphical methods, the simplex method, and specialized problems like transportation and assignment. Students will gain practical skills in formulating, solving, and analyzing linear programming models, with applications in various optimization scenarios.					

CO	CO Statement	Cognitive	Knowledge	Evaluation
		Level*	Category#	Tools used
CO1	Describe the fundamental properties and types of linear programming models, distinguishing between maximization and minimization models, and explain various methods used for solving linear programming problems including graphical methods.	U	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	Apply the simplex method to solve both maximization and minimization linear programming problems, compare the graphical method with the simplex method in terms of efficiency and applicability, and demonstrate problem-solving skills through worked-out examples.	Ap	P	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	Evaluate and solve transportation and assignment problems using specific techniques such as the North-West corner method, Least Cost cell method, Vogel's approximation method, and the Hungarian method, while also comparing the transportation model with general linear programming models.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam

	ext ok	Operations Research (2/e), P Rama Murthy ,New Age Internation	al Publi	shers
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
Ι		Linear Programming Models: (Graphical Method)	10	Min 15
	1	Section 2.1- Introduction, 2.2- Properties of Linear Programming		
		Model		
	2	Section 2.3-Maximization Models		
	3	Section 2.4- Minimization Models		
	4	Section 2.5- Methods for the Solution of a Linear Programming		
		Problem		
	5	(up to Problem 2.9)		
	3	Section 2.5- Methods for the Solution of a Linear Programming Problem		
		(From Problem 2.9)		
II		Linear Programming Models: (Simplex Method)	13	Min 15
11	6	Section 3.1- Introduction, 3.2- Comparison Between Graphical	13	WIIII 13
		andSimplex Methods		
	7	Section 3.3- Maximisation Case		
	8	Section 3.4- Minimisation Case		
	9	Section 3.5- Worked Out Problems- Maximization		
	10	Section 3.7- Minimisation Problems		
		Linear Programming Models: (Two Phase Simplex Method and		
III		Transportation Problem)	11	Min 15
	11	Section 3.8- Mixed Problems		
	12	Section 3.10- Artificial Variable Method or Two Phase Method		
	В	Section 3.11- Degeneracy in Linear Programming Problems	1	
	14			
		Section 4.1, 4.2 Transportation model		
	15	Section 4.1, 4.2 Transportation model Section 4.3 – Comparison between Transportation model and		
		Section 4.3 – Comparison between Transportation model and		
IV	15	Section 4.3 – Comparison between Transportation model and general linear programming model, 4.4- Approach to solution to a	14	
IV	15	Section 4.3 – Comparison between Transportation model and general linear programming model, 4.4- Approach to solution to a transportation problem by Transportation Algorithm. near Programming Models: (Transportation Problem and Assignment	14	Min 15
IV	15	Section 4.3 – Comparison between Transportation model and general linear programming model, 4.4- Approach to solution to a transportation problem by Transportation Algorithm. near Programming Models: (Transportation Problem and Assignment Problem) Section 4.4.3- Basic feasible solution by North -West corner method Section 4.4.4- Solution by Least Cost cell method	14	Min 15
IV	15 Li	Section 4.3 – Comparison between Transportation model and general linear programming model, 4.4- Approach to solution to a transportation problem by Transportation Algorithm. near Programming Models: (Transportation Problem and Assignment Problem) Section 4.4.3- Basic feasible solution by North -West corner method Section 4.4.4- Solution by Least Cost cell method Section 4.4.5- Solution by Vogel's approximation method	14	Min 15
IV	15 Li 16 18	Section 4.3 – Comparison between Transportation model and general linear programming model, 4.4- Approach to solution to a transportation problem by Transportation Algorithm. near Programming Models: (Transportation Problem and Assignment Problem) Section 4.4.3- Basic feasible solution by North -West corner method Section 4.4.4- Solution by Least Cost cell method Section 4.4.5- Solution by Vogel's approximation method Section 4.4.6- Optimality test- Stepping stone method (Modified)	14	Min 15
IV	15 Li 16 18 19 20	Section 4.3 – Comparison between Transportation model and general linear programming model, 4.4- Approach to solution to a transportation problem by Transportation Algorithm. near Programming Models: (Transportation Problem and Assignment Problem) Section 4.4.3- Basic feasible solution by North -West corner method Section 4.4.4- Solution by Least Cost cell method Section 4.4.5- Solution by Vogel's approximation method Section 4.4.6- Optimality test- Stepping stone method (Modified distribution method is in open ended module)	14	Min 15
IV	15 Li 16 18 19 20	Section 4.3 – Comparison between Transportation model and general linear programming model, 4.4- Approach to solution to a transportation problem by Transportation Algorithm. near Programming Models: (Transportation Problem and Assignment Problem) Section 4.4.3- Basic feasible solution by North -West corner method Section 4.4.4- Solution by Least Cost cell method Section 4.4.5- Solution by Vogel's approximation method Section 4.4.6- Optimality test- Stepping stone method (Modified distribution method is in open ended module) Section 5.1, 5.2 – Assignment model,	14	Min 15
IV	15 Li 16 18 19 20	Section 4.3 – Comparison between Transportation model and general linear programming model, 4.4- Approach to solution to a transportation problem by Transportation Algorithm. mear Programming Models: (Transportation Problem and Assignment Problem) Section 4.4.3- Basic feasible solution by North -West corner method Section 4.4.4- Solution by Least Cost cell method Section 4.4.5- Solution by Vogel's approximation method Section 4.4.6- Optimality test- Stepping stone method (Modified distribution method is in open ended module) Section 5.1, 5.2 – Assignment model, Section 5.4- Approach to solution-Hungarian method (Other	14	Min 15
	15 Li 16 18 19 20	Section 4.3 – Comparison between Transportation model and general linear programming model, 4.4- Approach to solution to a transportation problem by Transportation Algorithm. near Programming Models: (Transportation Problem and Assignment Problem) Section 4.4.3- Basic feasible solution by North -West corner method Section 4.4.4- Solution by Least Cost cell method Section 4.4.5- Solution by Vogel's approximation method Section 4.4.6- Optimality test- Stepping stone method (Modified distribution method is in open ended module) Section 5.1, 5.2 – Assignment model, Section 5.4- Approach to solution-Hungarian method (Other methods of solution are optional)		Min 15
IV	15 Li 16 18 19 20 21 22	Section 4.3 – Comparison between Transportation model and general linear programming model, 4.4- Approach to solution to a transportation problem by Transportation Algorithm. The Programming Models: (Transportation Problem and Assignment Problem) Section 4.4.3- Basic feasible solution by North -West corner method Section 4.4.4- Solution by Least Cost cell method Section 4.4.5- Solution by Vogel's approximation method Section 4.4.6- Optimality test- Stepping stone method (Modified distribution method is in open ended module) Section 5.1, 5.2 – Assignment model, Section 5.4- Approach to solution-Hungarian method (Other methods of solution are optional) Open Ended Module	12	Min 15
	15 Li 16 18 19 20 21 22	Section 4.3 – Comparison between Transportation model and general linear programming model, 4.4- Approach to solution to a transportation problem by Transportation Algorithm. near Programming Models: (Transportation Problem and Assignment Problem) Section 4.4.3- Basic feasible solution by North -West corner method Section 4.4.4- Solution by Least Cost cell method Section 4.4.5- Solution by Vogel's approximation method Section 4.4.6- Optimality test- Stepping stone method (Modified distribution method is in open ended module) Section 5.1, 5.2 – Assignment model, Section 5.4- Approach to solution-Hungarian method (Other methods of solution are optional) Open Ended Module plex method special Cases- Alternate solution. Unbound Solutions, Pro	12	Min 15
	15 Li 16 18 19 20 21 22 Sim with	Section 4.3 – Comparison between Transportation model and general linear programming model, 4.4- Approach to solution to a transportation problem by Transportation Algorithm. near Programming Models: (Transportation Problem and Assignment Problem) Section 4.4.3- Basic feasible solution by North -West corner method Section 4.4.4- Solution by Least Cost cell method Section 4.4.5- Solution by Vogel's approximation method Section 4.4.6- Optimality test- Stepping stone method (Modified distribution method is in open ended module) Section 5.1, 5.2 – Assignment model, Section 5.4- Approach to solution-Hungarian method (Other methods of solution are optional) Open Ended Module plex method special Cases- Alternate solution. Unbound Solutions, Programment of the problem of the	12	Min 15
	15 Li 16 18 19 20 21 22 Sim with Tran	Section 4.3 – Comparison between Transportation model and general linear programming model, 4.4- Approach to solution to a transportation problem by Transportation Algorithm. near Programming Models: (Transportation Problem and Assignment Problem) Section 4.4.3- Basic feasible solution by North -West corner method Section 4.4.4- Solution by Least Cost cell method Section 4.4.5- Solution by Vogel's approximation method Section 4.4.6- Optimality test- Stepping stone method (Modified distribution method is in open ended module) Section 5.1, 5.2 – Assignment model, Section 5.4- Approach to solution-Hungarian method (Other methods of solution are optional) Open Ended Module plex method special Cases- Alternate solution. Unbound Solutions, Pro	12	Min 15

- 1. KV Mittal and C Mohan, Optimization methods in Operations research and system analysis(3/e)
- 2. Kanti Swarup, PK Gupta and Manmohan, Operations Research(20/e)

Note: 1) Optional topics are exempted for end semester examination. (2) Proofs of all the results are exempted for external exam. (3) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	2	3	2	3	2	3	1	2
CO 3	3	2	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	>	>	>	✓
CO 2	✓	√	√	✓	√
CO 3	√	√	√	✓	✓

Programme	B. Sc. Mathematics Honours						
Course Code	MAT1MN106						
Course Title	PRINCIPLES C	OF MICRO ECONOMICS					
Type of Course	Minor						
Semester	I						
Academic Level	100-109						
Course Details Credit		Lecture/Tutorial	Practical	Total Hours			
		per week	per week				
	4	4	-	60			
Pre-requisites	Higher Secondar	y Mathematics					
Course Summary	-	behaviour in Demand and Suj					
		and, supply, and elasticity, a					
		lerstand cost structures, reven					
		y. Explore the Theory of Cor		_			
		utility maximization and rational consumer choices, then apply economic					
	_	hniques using derivatives in E		-			
	functions and so	lve constrained optimization p	problems efficie	ntly.			

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse the factors affecting demand and supply and determine market equilibrium.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	Apply the concepts of cost and revenue functions to analyze short-run and long-run production decisions.	Ap	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	Evaluate economic functions and optimize using derivatives and Lagrange multipliers.	Е	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text B	ook	 Principles Of Microeconomics, 15th revised edition H.L.Ahuja, Introduction to Mathematical Economics, 3rd edition, Edward.T Schaum's Outline series, TMH 		
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)
I		Demand and Supply Analysis Text(1)	13	
	1	(Relevant sections of chapter 5 and 7)		1
	1	Utility and demand, the meaning of demand and quantity demanded		
	2	The law of demand- demand curve- market demand curve		
	3	Reasons for the law of demand- slope of a demand curve		
	4	Shift in demand- demand function and demand curve		
	5	The meaning of supply- supply function- law of supply		
	6	Slope of a supply curve- shift in supply- market equilibrium		
	7	Price elasticity if demand- measurement of price elasticity-		
		arcelasticity of demand- cross elasticity of demand	1.0	
II		Cost and Revenue Functions Text (2) (Relevant sections of chapter 19and 2)	12	
	8	Cost function- Average Cost(AC) and Marginal Cost(MC)		
	9	Short run costs: Total Fixed and Variable Cost- Short Run average cost curve- Average Variable Cost(AVC)- Relationship between AVCand Average product- Average Total Cost- Marginal Cost		
	10	Long run costs: Long Run Average Cost Curve- relationship of Long run Average Cost Curve(LAC) and Long run Marginal Cost Curve(LMC) with SAC and SMC		
	11	Revenue function, Marginal Revenue (MR) and Average Revenue (AR)		
	12	Relation between MR, AR and elasticity of demand		
III		Theory Of Consumer Behaviour Text(1) (Relevant sections of chapter 9 and 11)	10	
	13	Cardinal utility analysis- the law of diminishing marginal utility-		
		illustration of law of diminishing marginal utility		
	14	The law of equi-marginal Utility		
	15	Indifference curves- ordinal utility		
	16	Marginal rate of substitution- properties of indifference curves		
IV		Economic Applications of Derivatives Text (2) (Chap-4:sec.4.7&4.8 ,Chap 5,Chap6:sec.6.1-6.6)	13	
	17	Economic application of derivatives- marginal, average, totalconcepts		
	1	F ***	1	1

	18	Optimizing economic function		
	19	Functions of several variables and partial derivatives		
	20	Second order partial derivatives, optimization of multivariable function		
	21	Constrained optimization with Lagrange multipliers		
	22	Significance of Lagrange multipliers, total differential		
V		Open Ended	1	
	Deriv	l maxim	na, local	

- 1. RGD Allen, Mathematical analysis for economists Macmillan
- 2. Geoff Renshaw: Maths for Economics(3/e) Oxford University Press, N.Y. (2012) ISBN 978-0-19-96212-4

Note: 1) Proofs of all the results are exempted for external exam. (2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module. Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	3	2	3	2	3	1	2
CO 2	2	1	3	2	3	2	3	1	2
CO 3	3	2	3	1	3	2	3	1	3

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	✓	✓	✓	✓
CO 2	√	√	√	√	✓
CO 3	√	√	√	\	✓

Programme	B. Sc. Mathematics Honours						
Course Code	MAT2MN106						
Course Title	OPTIMIZATIO	ON TECHNIQUES IN ECO	ONOMICS				
Type of Course	Minor						
Semester	II						
Academic Level	100-109						
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours			
	4	4	-	60			
Pre-requisites	Higher Secondar	y Mathematics					
Course Summary	inequality, incluand Gini ratio. directional dericonstrained and such as profit more covers in	This course examines the causes, effects, and measures of income inequality, including its measurement using tools like the Lorenz curve and Gini ratio. It explores calculus of several variables, focusing on directional derivatives, gradients, and optimization techniques, both constrained and unconstrained, with applications in economic contexts such as profit maximization and monopolistic practices. Additionally, the course covers input-output analysis, introducing technological coefficient matrices and models to analyse economic equilibrium and production functions					

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Analyse the causes and effects of income inequality and evaluate the measures used to reduce it.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	Apply the principles of calculus to optimize economic functions without constraints.	Ap	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	Evaluate constrained optimization problems using appropriate mathematical techniques.	Е	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text book: 1. M.L.Jhingan: Micro Economic Theory(6/e), Vrinda publications					
		2. Carl.P.Simon, Lawrence Blume: Mathematics for Economists W.W. Nor Inc(1994) ISBN 0-393-95733-0	tan& Co	mpany,	
		3. Mehta- Madnani: Mathematics for Economics Revised Edn S. Chand.			
Module	Unit	nit Content			
I		Inequalities in Income Text (1) (Chapter 47)	10		
		Inequalities in Income- Causes of inequality			
	2	Effects of inequality – measures to reduce inequality			
		Measurement of inequality of income- Lorenz curve Gini ratio			
II	Calcu	dus of Several Variables and Unconstrained Optimization Text (2) (Chap:14:sec.14.6,14.7,14.8,Chap 17: sec.17.1-17.5)	14		
	4	Directional derivatives and gradients, the gradient vector			
	5	Approximation by differential Jacobian derivative			
	6	The chain rule, higher order derivative			
	7	Second order derivatives and Hessians			
	8	Young's Theorem, economical applications			
	9	Unconstrained optimization: definitions, first order			
		conditions, secondorder conditions			
	10	Global maxima and minima, global maxima of concave functions			
	11	Economic applications- profit maximising firm-discriminatingMonopolist			
	12	Least Square analysis			
III		Constrained Optimization Text (2) (Chap 18: sec.18.1-18.7)	12		
	13	First order conditions: objective function, constraint functions, examples			
	14	Equality constraints, two variables and one equality constraints, several equality constraints			
	15	Inequality constraints, one inequality constraints, several inequality constraints			

	16	Mixed constraints, constrained minimization problems					
	17	Kuhn-Tucker formulation, examples and applications					
IV		Input output analysis Text(3)	12				
	(Chap 19 :sec.19.1-19.7,19.9,19.11,19.13)						
	18	Introduction- assumption- technological coefficient matrix					
	19	Closed and open input output model- coefficient matrix and open					
		model					
	20	The Hawkins- Simon conditions- solution for two industries					
	21 Determination of equilibrium of prices- coefficient matrix and closed						
	model						
	22	The Leontief production function- limitation of input output analysis					
V		Open Ended Module	12				
	The total derivative, The chain rule, Level curves and their tangents, Concave and						
	Conv	ex Functions					

- 1. R G D Allen: Mathematical analysis for economists Macmillain
- 2. A C Chiang& K Wainwright: Fundamentals of Mathematical Economics(4/e) McGraw Hill
- 3. Michael D Intriligator: Mathematical Optimization and Economic Theory Classics in Applied Mathematics, SIAM(2002)

Note: 1) Proofs of all the results are exempted for external exam. (2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of ${\bf COs}$ with ${\bf PSOs}$ and ${\bf POs}$:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	2	2	3	2	2	1	3	2	1
CO 2	3	2	3	1	2	1	3	1	1
CO 3	2	2	3	1	2	1	3	1	1

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	√	✓
CO 2	✓	√	√	✓	~
CO 3	√	√	√	√	✓

Programme	B. Sc. Mathematics Honours							
Course Code	MAT3MN206	MAT3MN206						
Course Title	APPLIED MAT	APPLIED MATHEMATICS FOR ECONOMIC ANALYSIS						
Type of Course	Minor							
Semester	III							
Academic Level	200-299							
Course Details Credit		Lecture/Tutorial	Practical	Total Hours				
		per week	per week					
	4	4	-	60				
Pre-requisites Higher Se	ondary Mathema	itics						
Course Summary		ers differential and differen						
	applications. It explores production functions, including the law of variable							
	proportions, isoquants, and optimization of Cobb-Douglas and CES functions.							
	•	introduces econometrics, foc	cusing on regres	sion analysis and				
	econometric met	thodology.						

СО	CO Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Apply differential and difference equations to model and solve economic problems.	Ap	P	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	Analyse production functions to understand the relationship between inputs and outputs, including optimization techniques.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	Evaluate econometric models to interpret statistical relationships and economic variables.	Е	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text	1. Edward.T.Dowling: Introduction to mathematical Economics, Schaum's Outline s edition TMH						
Books		S.Chand					
		it, 2008					
Module	Unit	Content	Hrs (48 +12)	Ext. Marks (70)			
I Diff	erenti	al and Difference Equations Text(1)	12				
	1	(Chapter 16, 17)					
	2	Diferential Equation: definition and concepts First order linear differential equation, exact differential equations, integrating factors	-				
	3	Separation of variables, Economic applications	1				
	4	Difference equations: definitions and concepts	-				
	5	First order linear difference e quations, Economic applications	1				
	6	The Cobweb Model, the Harrod model					
II		The Production Function Text (2) (Chapter 14: sec 14.1-14.9)	10				
	7	Meaning and nature of production function, the Law of VariableProportions					
	8	Isoquants, Marginal Rate of Technical Substitution (MRTS)					
	9	Producers' equilibrium, expansion of path.					
	10	The elasticity of substitution, ridge lines and Economic region of production					
III Th		luction Function(contd.) and Euler's theorem Text(1&2) pter 14: sec 14.10-14.3 of text 2, Chap 6: sec 6.9 &6.10 of text 1)	14				
	11	Euler's theorem(Statement only), Euler's theorem and homogenous production function	-				
	12	Cobb Douglas production function, properties, limitations					
	13	CES production function, properties, advantages, limitations					
	14	Returns to scale, Cobb Web theorem	_				
	15	Optimization of Cobb Douglas, Optimization of CES production Function					
IV		Econometrics Text(3) (Pages 1 to 59)	12				
- '	16	Introduction to econometrics	† ~~				
	17	Statistical v/s deterministic relations hips, regression v/s correlation	1				
	18	Types of data, Measurements of Economic variables					
	19	Methodology of Econometrices					
	20	Two variable regression analysis Population regression function (PRF), Stochastic specification of PRF					
	22	Sample regression function (SRF)					
		Dample regression function (SIXI)		<u> </u>			

V		12	
	Open Ended Module		
	Matrix solution of Simultaneous Differential and Difference equations, Difference	ntiation	of
	Exponential and Logarithamic functions		

- 1.RGD Allen Mathematical Analysis for Economists MacMillan
- 2.AC Chiang & K Wainwright: Fundamentals of Mathematical Economics (4/e,) McGraw Hill 3.Jeffrey.M. Wooldridge: Introductory Econometrics: A modern Approach (6/e), Cengage learning 2016

Note: 1) Proofs of all the results are exempted for external exam. (2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO5	PSO6	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	1	3	2	3	2	3	1	2
CO 2	3	1	3	2	3	2	3	1	2
CO 3	2	3	3	2	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	~	√	\	✓
CO 2	✓	√	√	✓	✓
CO 3	✓	√	√	√	✓

DOUBLE MAJOR COURSES

(Courses other than listed in the pathways 1-4)

Programme	B.Sc. Mathematics Honours							
Course Title	ELEMENTARY LINEAR ALGEBRA							
Type of Course	Double Major							
Semester	IV	IV						
Academic	200 – 299							
Level	Level							
Course Details	Credit Lecture/Tutorial Practicum Total							
	per week per week Hours							
	4	3	2	75				
Pre-requisites	1. Mathematical Logic and necessary exposure to set theory.							
_	2. Basic Calculus	_	-					
Course	After introducing the basic notions in set theory, the course develops into							
Summary	the construction of the Real number system. Thereafter Real functions are							
	introduced and the notion of limit is developed in a rigorous way.							

CO	CO Statement	Cognitive	Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse the properties and relationships within vector spaces, eigenvalues, eigenvectors, and orthogonality, demonstrating proficiency in identifying subspaces, bases, eigen decomposition, and orthogonal sets.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	Apply techniques such as finding null spaces, column spaces, solving characteristic equations, diagonalizing matrices, and performing QR factorization.	Ap	P	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	Evaluate the significance and utility of results such as Spectral theorem and singular value decomposition in various applications	E	M	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

[#] - Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Text	Linear Algebra and its Applications, Third Edition, David .C. Lay, Pearson Publications.					
Module	Unit	Content	Hrs (45+30)	External Marks (70)		
I		Vector Spaces	14	20		
	1	Section 4.1 – Vector Spaces and Subspaces				
	2	Section 4.2 – Null Spaces, Column Spaces and Linear				
		Transformations.				
	3	Section 4.2 – The Column S pace of a Matrix.				
	4	Section 4.2 – Kernel and Range of a				
		LinearTransformation.				
	5	Section 4.3 – Linea rly Independent; Bases.				
	6	Section 4.3 – Bases for Nul A and Col A.				
	C	ontinue the study of sections 4.5 to 4.6 in the practicum m instructed.	ode as			
II		Eigen Values and Eigen Vectors	11	20		
	7	Section 5.1 – Eigen Vectors and Eigen Values.		20		
	8	Section 5.2 – The Characteristic E quation.				
	9	Section 5.2 – Simila rity of Matrices.				
	10	Section 5.3 - Dia gonalization				
	11	Section 5.3 – Dia gonalizing Matrices				
III		Orthogonality	10 15			
	12	Section 6.1 – Inner Product, Le ngth and orthogonality.				
	13	Section 6.1 – Or thogonal Vectors (Orthogonality)				
	14	Section 6.2 – Or thogonal Sets.				
	15	Section 6.2 – Orthonormal sets.	_			
	16	Section 6.4 – The Gram – Schmidt Process				
		-Orthonormal Bases				
	17	Section 6.4 – QR Factorization of Matrices				
IV		Singular Value Decomposition	10	15		
	18	Section 7.1 – Dia gonalization of Symmetric Matrices.				
	19	Section 7.1 – The S pectral Theorem.				
	20	Section 7.2 - Quadratic Forms - Change of Variable				
		and Geometric View of Principal Axes omitted.				
	21	Section 7.2 – Quadratic Forms – Classifying Quadratic				
		Forms.				
	22	Section 7.4 - The Singular Value Decomposition				
		–(applications are omitted for exam)				
${f V}$		Practicum:	30	-		
		e goal is for the students to learn the following selected				
	_	ics via self-study and group activities. The lecturer may				
		at by running and overseeing group discussions and class				
	S	eminars and referring library books for self-study and				
		note preparations.				

Chapters 1 to 3 of the text for giving an introduction and	
motivation to the concepts of vector spaces, subspaces,	
Linear dependence and independence, Linear	
Transformations and their relations with matrices.	
Section 4.4 – Coordinate Systems.	
Section 4.4 – The Coordinate Mapping.	
Section 4.5 – The Dimension of a Vector Space.	
Section 4.5 – Subspaces of a Finite	
DimensionalSpace.	
Section 4.6 – Rank.	
Section 4.6 – The Rank Theorem.	

References

- 1. Elementary Linear Algebra: Application Version, 11/e, Howard Anton & Chris Rorres Wiley
- 2. Algebra Done Right, 3/e, Sheldon Axler, Springer Nature, 2015.
- 3. Introduction to Linear Algebra, 6/e, Gilbert Strang, Wellesley-Cambridge Press.
- 4. Basic Linear Algebra, 2/e, T. S. Blyth and E.F. Robertson, Springer, 2002.
- 5. Linear Algebra, 2/e, Hoffman K and Kunze R, Prentice Hall of India,1991.
- 6. Bretscher, Otto. *Linear algebra with applications*. Vol. 52. Eaglewood Cliffs, NJ: Prentice Hall, 1997.
- 7. Blyth, Thomas Scott, and Edmund F. Robertson. *Basic linear algebra*. Springer Science & Business Media, 2013.

362

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	2	2	3	1	3	2	3	1	2
CO 2	3	3	3	2	3	1	3	2	3	1	2
CO 3	3	3	2	3	3	1	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Internal Exam Assignment		Viva	End Semester Examinations	
CO 1	√	√	√	√	√	
CO 2	√	√	√	✓	✓	
CO 3	√	√	√	√	√	

Programme	B.Sc. Mathematics Ho	B.Sc. Mathematics Honours						
Course Title	REAL ANALYSIS	REAL ANALYSIS						
Type of Course	Double Major							
Semester IV								
Academic Level	200–299							
Course Details	Credits	Lecture/Tutorial	Practicum	Total Hours				
		per week	per week					
	4	3	2	75				
Pre-requisites	Mathematical Logic Basic Calculus	c and necessary exposure	to set theory.					
Course Summary	construction of the	basic notions in set theore Real number system. The tions of limit and continu	Thereafter Real	functions are				

Course Outcomes (CO):

CO	CO Statement Cognitive		Knowledge	Evaluation Tools
		Level*	Category#	used
CO1	Analyse sequences and their limits, apply limit theorems, and demonstrate understanding of monotone sequences and apply the Bolzano Wierstrass theorem and its implications on sub sequences.	An	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	To apply the concepts of continuous functions, including combinations of continuous functions and their behaviour on intervals. Also demonstrate proficiency in determining uniform continuity and its applications.	Ap	Р	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	To evaluate Riemann integrals, identify Riemann integrable functions, and apply the Fundamental Theorem of Calculus. Demonstrate proficiency in solving problems related to L'Hospital's Rule, Taylor's Theorem, Pointwise and Uniform Convergence, and Interchange of Limits.	E	P	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

Text o		duction to Real Analysis, 4/e, Robert G Bartle, Donal as (2011)	d R Sherbe	rt John Wil	ey
Module	Unit	Content	Hrs (45+30)	External Marks (70)	Internal Marks
I		Sequences and Limits	12	20	
	1	Section 3.1 – Se quences and their limits.	3		
	2	Section 3.2 – Limit theorems.	3		
	3	Section 3.3 – Monotone sequences – Euler'snumber introduction only.	2		
	4	Section 3.4 – Sub sequences and the Bolzano Wierstrass theorem – 3.4.1 to 3.4.9 (second proof of Theorem 3.4.8 is optional)	2		
	5	Section 4.1 - Limit of functions (Proofs included inPracticum).	1		
	6	Section 4.2 - Limit theorems (Proofs included inPracticum).	1		
II		Continuous Functions	10	20	
	7	Section 5.1 – Continuous functions.	2		
	8	Section 5.2 – Combinations of continuous functions.	2		
	9	Section 5.3 – Continuous functions on Intervals - 5.3.1 to 5.3.5	2		
	10	Section 5.3 – from 5.3.7 to 5.3.10	2		10
	11	Section 5.4 – Uniform Continuity - 5.1.1 to 5.4.8	2		10
III		Differentiation	10	20	
	12	Section 6.1 – The Derivative – 6.1.1 to 6.1.4	2		
	13	Section 6.1 – from 6.1.5 to 6.1.7	2		
	14	Section 6.2- The Mean Value Theorem - 6.2.1 to 6.2.4	2		
	15	Section 6.2- from 6.2.5 to 6.2.9	2		
	16	Section 6.2- from 6.2.10 to 6.2.13	2		
IV		The Riemann Integral	13	15	
	17	Section 7.1 –Riemann In tegral –7.1.1 to 7.1.4 (a)	2		
	18	Section 7.1 – from 7.1.5 to 7.1.7	2		
	19	Section 7.2 – Riemann Integrable functions – 7.2.1 to 7.2.5 (example 7.2.6 is optional)	2		
	20	Section 7.2 – from 7.2.7 to 7.2.13	2		
	21	Section 7.3 – The Fundamental Theorem – 7.3.1to 7.3.9	3		
	22	Section 7.3 – The Fundamental Theorem – 7.3.10to 7.3.18	2		

V	Practicum:	30	-	
	The goal is for the students to learn the following selected			
	topics in 15 practicum sessions of two hours each via			
	self-study and group activities. The lecturer may assist by			20
	running group discussions and supervising class seminars			
	and referring library books for self-study and			
	note preparations.			
	Session 1: Sets and Functions – Section 1.1			
	Session 2: Mathematical Induction – Section 1.2			
	Session 3: Finite and Infinite Sets – Section 1.3			
	Session 4: The Algebraic and Order Properties of R-Section 2.1			
	Session 5: Absolute Value and the Real Line - Section 2.2			
	Session 6: The Completeness property of R- Section 2.3			
	Session 7: Intervals - Section 2.5			
	Session 8: The Cauchy Criterion – Section 3.5			
	Session 9: Introduction to Infinite Series - Section 3.7			
	Session 10: Section 4.1 – proofs as in Module I			
	Session 11: Section 4.2 - proofs as in Module I			
	Session 12: L'Hospital's Rules- Section 6.1			
	Session 13: Taylor's Theorem - Section 6.4			
	Session 14: Pointwise and Uniform Convergence -Section 8.1			
	Session 15: Interchange of Limits - Section 8.2			
References	1. Tom.M.Apostol, Calculus I, Wiley & Sons.			
	2. Tom.M.Apostol, Mathematical Analysis, 2/e, Addison-V			
	3. Richard R Goldberg, Methods of Real Analysis, 2/e, Wi			
	4. Raymond L Wilder, Introduction to the Foundations of	f Mathema	tics,2/e, Joh	n Wiley
	& Sons			

Note: 1) Optional topics are exempted for end semester examination (2) 70 external marks are distributed over the first four modules subjected to a minimum of 15 marks from each module.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	3	2	2	3	1	3	2	3	1	2
CO 2	3	3	2	3	3	1	3	2	3	1	2
CO 3	3	3	3	3	3	1	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	>	>	✓
CO 2	√	√	√	✓	✓
CO 3	√	√	√	√	✓

Programme	B.Sc. Mathematics Honours							
Course Title	COMPLEX ANALYSIS							
Type of Course	Double Major							
Semesters	5/6							
Academic Level	300- 399							
Course Details	Credits Lecture/Tutorial Practicum Total Hours per week per week							
	4	3	2	75				
Pre-requisites Course Summary	This course discusses th		mbers. Module-I	discusses complex				
	numbers and their prope and roots and sets poin functions, special pow includes the concepts	This course discusses the concepts of complex numbers. Module-I discusses complex numbers and their properties, complex plane, polar form of complex numbers, powers and roots and sets points in the complex plane. Module-II discusses the complex functions, special power functions such as z^n and $z^{-1/n}$. The third module includes the concepts of limits and continuity, Differentiability and analyticity, Cauchy Riemann equations and Harmonic conjugates. Module-IV discusses						
	Trigonometric and hy	perbolic functions. Financiprogram applings, reciprocal fun	al module is an	open ended part				

Course Outcomes (CO):

CO	CO Statement Cognitive	Level*	Knowledge Category#	Evaluation Tools used
CO1	Understanding the concepts of Complex numbers and their properties.	Ap	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO2	To gain a thorough understanding of the algebraic, geometric, and topological aspects of the complex number system, as well as complex variable functions, their limits and continuity.	Ap	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam
CO3	To understand harmonic functions and their relationship with analytic functions. Also to understand a few simple analytic functions of complex analysis and their properties.	Ap	С	Internal Exam/ Assignment/ Seminar/ Viva/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C)

^{# -} Factual Knowledge (F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

Module Unit Content Hrs (75) Module I			Complex Analysis (Third Edition): Dennis G. Zill & Patric D. Shanahan	Text							
Section 1.1 Complex Numbers and Their Properties 2 Section 1.2 Complex Plane 3 Section 1.3 Polar Form of Complex Numbers-up to and including Example 2. 5 Section 1.3 Polar Form of Complex Numbers-All the topics after Example 2. 6 Section 1.5 Sets of Points in Complex Plane - up to and including Example 2. 12	Externa Marks (70)		le Unit Content								
Section 1.2 Complex Plane 3 Section 1.3 Polar Form of Complex Numbers-up to and including Example 2. 4 Section 1.3 Polar Form of Complex Numbers-All the topics after Example 2. 5 Section 1.5 Sets of Points in Complex Plane- up to and including Example 2. 6 Section 1.5 Sets of Points in Complex Plane- All the topics after Example 2. 12		11	Module I								
Section 1.3 Polar Form of Complex Numbers-up to and including Example 2. Section 1.3 Polar Form of Complex Numbers- All the topics after Example 2. Section 1.5 Sets of Points in Complex Plane- up to and including Example 2. Section 1.5 Sets of Points in Complex Plane- All the topics after Example 2. Module II			1 Section 1.1 Complex Numbers and Their Properties	-							
Example 2. Section 1.3 Polar Form of Complex Numbers- All the topics after Example 2. Section 1.5 Sets of Points in Complex Plane- up to and including Example 2. Section 1.5 Sets of Points in Complex Plane - All the topics after Example 2. Module II			2 Section 1.2 Complex Plane								
Section 1.5 Sets of Points in Complex Plane- up to and including Example 2. Section 1.5 Sets of Points in Complex Plane - All the topics after Example 2. Section 2.1 Complex Functions			Example 2.								
Example 2. Section 1.5 Sets of Points in Complex Plane -All the topics after Example 2.	15		Example 2.	I							
III Example 2. Module II 12			Example 2.								
Theorem 3.3.2 Section 3.4 Harmonic Functions Section 3.5 Complex Integrals- up to and including Example 2. Section 3.6 Section 3.7 Complex Functions as Mappings- up to and including Example 7.) Section 3.1 Limits and Continuity-Continuity (Topics in 3.1.2, up to Example 7.) Section 3.1 Limits and Continuity-Continuity (Theorem 3.1.4 to up to and including a bounding property. Module III 12 Section 3.2 Differentiability and Analyticity- up to and including Example 2. 13 Section 3.2 Differentiability and Analyticity- All the topics after Example 2. 14 Section 3.3 Cauchy-Riemann Equations-up to and including Theorem 3.3.2 15 Section 3.4 Harmonic Functions Module IV 17 Section 5.2 Complex Integrals- up to and including Example 2 18 Section 5.3 Cauchy- Goursat Theorem-up to and including Example 2 19 Section 5.3 Cauchy- Goursat Theorem-up to and including Example 4. 20 Section 5.4 Independence of Path- up to and including Example 1. 22 Section 5.4 Independence of Path- All the topics after Example 1. Practicum 30			Example 2.								
III 8 Section 2.2 Complex Functions as Mappings- up to and including Example 4. 9 Section 3.1 Limits and Continuity-Limits (All the topics in 3.1.1) 10 Section 3.1 Limits and Continuity-Continuity (Topics in 3.1.2, up to Example 7.) 11 Section 3.1 Limits and Continuity-Continuity (Theorem 3.1.4 to up to and including a bounding property. 12 Section 3.2 Differentiability and Analyticity- up to and including Example 2. 13 Section 3.2 Differentiability and Analyticity- All the topics after Example 2. 14 Section 3.3 Cauchy-Riemann Equations-up to and including Theorem 3.3.2. 15 Section 3.3 Cauchy Riemann Equations:-All the topics after Theorem 3.3.2. 16 Section 3.4 Harmonic Functions 10 Module IV 11 Section 5.2 Complex Integrals- up to and including Example 2 18 Section 5.2 Complex Integrals- All the topics after Example 2 19 Section 5.3 Cauchy- Goursat Theorem-up to and including Example 4. 20 Section 5.3 Cauchy- Goursat Theorem-All the topics after Example 4. 21 Section 5.4 Independence of Path- up to and including Example 1. 22 Section 5.4 Independence of Path- All the topics after Example 1. Practicum 30		12	_	-							
III Section 3.1 Limits and Continuity-Limits (All the topics in 3.1.1) Section 3.1 Limits and Continuity-Continuity (Topics in 3.1.2, up to Example 7.) Section 3.1 Limits and Continuity-Continuity (Theorem 3.1.4 to up to and including a bounding property. Module III			1	-							
III Section 3.1 Limits and Continuity-Continuity (Topics in 3.1.2, up to Example 7.) Section 3.1 Limits and Continuity-Continuity (Theorem 3.1.4 to up to and including a bounding property. Module III		-	Section 2.2 Complex Functions as Mappings- up to and including								
III Section 3.1 Limits and Continuity-Continuity (Theorem 3.1.4 to up to and including a bounding property.	15		9 Section 3.1 Limits and Continuity-Limits (All the topics in 3.1.1)								
III up to and including a bounding property. Module III 12 Section 3.2 Differentiability and Analyticity- up to and including Example 2. 13 Section 3.2 Differentiability and Analyticity- All the topics after Example 2. 14 Section 3.3 Cauchy-Riemann Equations-up to and including Theorem 3.3.2 15 Section 3.3 Cauchy Riemann Equations:-All the topics after Theorem 3.3.2. 16 Section 3.4 Harmonic Functions Module IV 17 Section 5.2 Complex Integrals- up to and including Example 2 18 Section 5.2 Complex Integrals- All the topics after Example 2 19 Section 5.3 Cauchy- Goursat Theorem-up to and including Example 4. 20 Section 5.3 Cauchy- Goursat Theorem-All the topics after Example 4. 21 Section 5.4 Independence of Path- up to and including Example 1. 22 Section 5.4 Independence of Path- All the topics after Example 1. Practicum 30											
III 12 Section 3.2 Differentiability and Analyticity- up to and including Example 2. 13 Section 3.2 Differentiability and Analyticity- All the topics after Example 2. 14 Section 3.3 Cauchy-Riemann Equations-up to and including Theorem 3.3.2 15 Section 3.3 Cauchy Riemann Equations:-All the topics after Theorem 3.3.2. 16 Section 3.4 Harmonic Functions Module IV 12 17 Section 5.2 Complex Integrals- up to and including Example 2 18 Section 5.2 Complex Integrals- All the topics after Example 2 19 Section 5.3 Cauchy- Goursat Theorem-up to and including Example 4. 20 Section 5.3 Cauchy- Goursat Theorem-All the topics after Example 4. 21 Section 5.4 Independence of Path- up to and including Example 1. 22 Section 5.4 Independence of Path- All the topics after Example 1. Practicum 30			Section 3.1 Limits and Continuity-Continuity (Theorem 3.1.4 to								
III Example 2.		10									
III Section 3.3 Cauchy-Riemann Equations-up to and including Theorem 3.3.2 15 Section 3.3 Cauchy Riemann Equations:-All the topics after Theorem 3.3.2. 16 Section 3.4 Harmonic Functions			Example 2.								
Theorem 3.3.2 Section 3.3 Cauchy-Riemann Equations-up to and including Theorem 3.3.2 Section 3.3 Cauchy Riemann Equations:-All the topics after Theorem 3.3.2. Module IV 12 17 Section 5.2 Complex Integrals-up to and including Example 2 18 Section 5.2 Complex Integrals- All the topics after Example 2 19 Section 5.3 Cauchy- Goursat Theorem-up to and including Example 4. 20 Section 5.3 Cauchy- Goursat Theorem-All the topics after Example 4. 21 Section 5.4 Independence of Path- up to and including Example 1. 22 Section 5.4 Independence of Path- All the topics after Example 1. Practicum 30	20		Example 2.	ш							
Theorem 3.3.2. 16 Section 3.4 Harmonic Functions Module IV 17 Section 5.2 Complex Integrals-up to and including Example 2 18 Section 5.2 Complex Integrals- All the topics after Example 2 19 Section 5.3 Cauchy- Goursat Theorem-up to and including Example 4. 20 Section 5.3 Cauchy- Goursat Theorem-All the topics after Example 4. 21 Section 5.4 Independence of Path- up to and including Example 1. 22 Section 5.4 Independence of Path- All the topics after Example 1. Practicum 30			Theorem 3.3.2								
IV Section 5.2 Complex Integrals-up to and including Example 2 18 Section 5.2 Complex Integrals- All the topics after Example 2 19 Section 5.3 Cauchy- Goursat Theorem-up to and including Example 4. 20 Section 5.3 Cauchy- Goursat Theorem-All the topics after Example 4. 21 Section 5.4 Independence of Path- up to and including Example 1. 22 Section 5.4 Independence of Path- All the topics after Example 1. Practicum 30			Theorem 3.3.2.								
IV Section 5.2 Complex Integrals-up to and including Example 2 18 Section 5.2 Complex Integrals- All the topics after Example 2 19 Section 5.3 Cauchy- Goursat Theorem-up to and including Example 4. 20 Section 5.3 Cauchy- Goursat Theorem-All the topics after Example 4. 21 Section 5.4 Independence of Path- up to and including Example 1. 22 Section 5.4 Independence of Path- All the topics after Example 1. Practicum 30											
IV Section 5.2 Complex Integrals- All the topics after Example 2 19 Section 5.3 Cauchy- Goursat Theorem-up to and including Example 4. 20 Section 5.3 Cauchy- Goursat Theorem-All the topics after Example 4. 21 Section 5.4 Independence of Path- up to and including Example 1. 22 Section 5.4 Independence of Path- All the topics after Example 1. Practicum 30		12		_							
IV Section 5.3 Cauchy- Goursat Theorem-up to and including Example 4. 20 Section 5.3 Cauchy- Goursat Theorem-All the topics after Example 4. 21 Section 5.4 Independence of Path- up to and including Example 1. 22 Section 5.4 Independence of Path- All the topics after Example 1. Practicum 30]		-							
20 Section 5.3 Cauchy- Goursat Theorem-All the topics after Example 4. 21 Section 5.4 Independence of Path- up to and including Example 1. 22 Section 5.4 Independence of Path- All the topics after Example 1. Practicum 30	20	-	Section 5.3 Cauchy- Goursat Theorem-up to and including	137							
21 Section 5.4 Independence of Path- up to and including Example 1. 22 Section 5.4 Independence of Path- All the topics after Example 1. Practicum 30	20		Section 5.3 Cauchy- Goursat Theorem-All the topics after	1 4							
22 Section 5.4 Independence of Path- All the topics after Example 1. Practicum 30		1		-							
Practicum 30		-									
		30	1 1								
Section 3.3 Cauchy's integral Politicias and Their Consequences-			Section 5.5 Cauchy's Integral Formulas and Their Consequences-	-							
Cauchy's Two Integral Formulas (All the topics in			Cauchy's Two Integral Formulas (All the topics in								
V 5.5.1)]	<u> </u>	\mathbf{V}							
Section 5.5 Cauchy's Integral Formulas and Their Consequences- Some Consequences of the Integral Formulas (All the topics in 5.5.2)			Some Consequences of the Integral Formulas (All the								

α	on 6.1 Company and Coming you to and including	
Section	on 6.1 Sequences and Series- up to and including	
	Example 4.	
Section	on 6.1 Sequences and Series- All the topics after Example 4.	
Section	on 6.2 Taylor Series-up to and Excluding Theorem 6.2.4.	
Section	on 6.2 Taylor Series-From Theorem 6.2.4 to Example 3.	
Section	on 6.3 Laurent Series-up to and including Example 1.	
Section	on 6.3 Laurent Series- All the topics after Example 1.	
Section	on 6.4 Zeros and Poles- Proofs of Theorem 6.4.1, Theorem 6.4.2,	
	Theorem 6.4.3 are omitted.	
Section	on 6.5 Residues and Residue Theorem-up to and including	
	Example 3.	
Section	on 6.5 Residues and Residue Theorem-All the topics after	
	Example 3.	
Section	on 6.6 Some Consequences of the Residue Theorem-	
	Evaluation of Real Trigonometric Functions (up to	
	and including example 1 of 6.6.1)	
Section	on 6.6 Some Consequences of the Residue Theorem-	
	Evaluation of Real Improper Integrals(up to and	
	including Example 2)	
Section	on 6.6 Some Consequences of the Residue Theorem-	
	Theorem 6.6.1 and Example 3.	
Section	on 6.6 Some Consequences of the Residue Theorem-	
	Theorem 6.6.2 and Example 4.	
References		

References		
1		Brown, James Ward, and Ruel V. Churchill. Complex variables and applications.
		McGraw-Hill,, 2009.
	2	Stein, Elias M., and Rami Shakarchi. Complex analysis. Vol. 2. Princeton University Press, 2010.
3		Burckel, Robert B. An Introduction to Classical Complex Analysis: Vol. 1. Vol. 64. Birkhäuser, 2012.
	4	Hormander, Lars. An introduction to complex analysis in several variables. Elsevier, 1973.
	5	Priestley, Hilary A. Introduction to complex analysis. OUP Oxford, 2003.
	6	Silverman, Richard A. Introductory complex analysis. Courier Corporation, 2013.

Mapping of COs with PSOs and POs:

	PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO 1	3	2	1	2	3	1	3	2	3	1	2
CO 2	3	3	2	3	3	1	3	2	3	1	2
CO 3	3	3	2	3	3	1	3	2	3	1	2

Correlation Levels:

Level	Correlation
-	Nil
1	Slightly / Low
2	Moderate / Medium
3	Substantial / High

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	√	✓
CO 2	✓	✓	√	√	√
CO 3	√	√	√	√	√

Programme	BSc Mathematics Honours							
Course Title	INTRODUCTION TO PYTHON AND SCIENTIFIC COMPUTING							
Type of Course	SEC – Double	Major						
Semester	IV							
Academic Level	200-299							
Course Details	Credit	Lecture/Tutorial per week	Practical per week	Total Hours				
	4	3	2	75				
Pre-requisites	calculus with an	edge to start a desktop/lapto understanding of differenti algebra (higher secondary	al and integral c					
Course Summary	programming. Ge Lists, Tuples, Fur and Strings and fi the Python progra SageMath is give concepts from cal the open-ended pr	duces the fundamentals of Pythetting started with Python, Variations, Branching, Input and chally Classes and Object-Orienting structure, an introduct in the last part of the course deculus and linear algebra are to ractical part so that the student inpute typical problems from the structure of the course of	ious Interfaces, V Output, Arrays and ented Programmination to the advance. Various practical to be solved using a state will come to kn	ariables, Modules, Loops, and Plotting, Dictionaries ag are introduced. Using ed mathematics software all problems making use of the SageMath software in				

Course Outcomes (CO):

СО	CO Statement	Cognitive Level*	Knowledge Category#	Evaluation Tools used
CO1	Understand Basics of Python Programming.	U	С	Internal Exam/ Assignment/ Practical Assessment / Viva/ End Sem Exam
CO2	Intermediate Level Concepts such as Object- Oriented Programming.	An	Р	Internal Exam/ Assignment/ Practical Assessment / Viva/ End Sem Exam
CO3	Scientific Computation using SageMath.	E	Р	Internal Exam/ Assignment/ Practical Assessment / Viva/ End Sem Exam

^{* -} Remember (R), Understand (U), Apply (Ap), Analyse (An), Evaluate (E), Create (C) # - Factual Knowledge(F) Conceptual Knowledge (C) Procedural Knowledge (P) Metacognitive Knowledge (M)

Detailed Syllabus:

Textbook Module	1. 2. Unit	Introduction to Scientific Programming with Python, Joakim SchringerBriefs on Computing, 2020, ISBN: 978-3-030-50356 https://link.springer.com/book/10.1007/978-3-030-50356-7 Sage for Undergraduates, 2nd Ed., Gregory V. Bard, 2022, A Mathematical Society, 2022. ISBN: 978-1470411114. 2014 Online Ed: http://www.people.vcu.edu/~clarson/bardundergraduates-2014.pdf Content	6-7. Open Access: American		
Wiodule		Content			
			(36+ 9)	Ext: 50	
I					
_		Python Basics (Text 1, Ch. 1, 2, 3, 4.)			
	1	Getting Started (Ch 1). Programming Simple Mathematics (Sec 2.1). Variables and Variable Types (Sec 2.2).	8		
	2	Formatting Text Output. Importing Modules. (Sec 2.3, 2.4).			
	3	Loops and Lists. Loops for Automating Repeated Tasks. Using Lists to Store Sequences of Data. (Sec 3.1, 3.2, 3.3).		Min.10	
	4 Iterating over a List with a for Loop Nested Lists and List Slicing. (Sec 3.4, 3.5). 5 Tuples. (Sec 3.6)				
	6	Programming with Functions Function Arguments and Local Variables. Default Arguments and Doc Strings. (Sec 4.1, 4.2, 4.3)			
	7	If Tests for Branching the Program Flow. Functions as arguments to Functions. (Sec 4.4, 4.5)			
	8	Solving Equations with Python Functions. (Sec 4.6)		Min 10	
	9	Writing Test Functions to Verify Programs (Sec 4.7).	8		
	10	User Input and Error Handling. Reading Input User Data. Reading Data from Files. Writing Data to Files. (Sections 5.1, 5.3, 5.4. Section 5.2 omitted).			
	1				
	12	Making Modules. (Sec 5.6)	1		
III		More Data Structures, Plotting			

		(Text 1, Ch. 6, 7).		
	13	Arrays and Plotting. Numpy and Array Computing. Plotting Curves with Matplotlib. (Sec 6.1, 6.2)		Min 10
	14	Plotting Discontinuous and Piecewise Defined Functions. (Sec 6.3).	7	
	15	Dictionaries and Strings. Examples: A Dictionary for Polynomials, Reading File Data to a Dictionary. (Sec 7.1 7.2, 7.3),		
	16	String Manipulation (Sec 7.4).		
IV		Classes and Object-Oriented Programming.		
		(Text 1, Ch. 9, 10.)		
	17	Basics of Classes. (Sec 8.1)		
	18	Protected Class Attributes, Special Methods.		
		Example: Automatic Differentiation of Functions. (Sec 8.2, 8.3, 8.4).	7	Min 10
	19	Test Functions for Classes. Example: A Polynomial Class. (Sec 8.5, 8.6).		
	20	Class Hierarchies and Inheritance.		
		Example: Classes for Numerical Differentiation, Integration. (Sec 9.1, 9.2, 9.3).		

V Practical (Open-Ended)

Lecturer's selections of 15 sessions of 2 hours each from below.

Miscellaneous Python Exercises

- 1. Pitfalls of Programming, Text 1, Section 2.5.
- Familiarize various Python runtime environments and IDEs like IDLE, Spyder, VS Code, Virtual Environments, Jupyter Notebook, Google Colab, Anaconda/Miniconda/Mamba, Replit.
- 3. Familiarize various documentation websites and how to refer to the syntax and implementation of a Python concept or Package.
- 4. Case studies from Reference 2:, Income Tax Calculator (page 38), Investment Report (p. 73), Approximating Square Roots. (p. 92), Text Analysis (p. 126), Generating Sentences (p. 150).

Sagemath

- 1. Getting and installing sagemath in Windows, Ubuntu OS Using sagemath using cocalc (online).
- 2. Using Sage as a Calculator, Using Sage with Common Functions, Using Sage for Trigonometry (Text 2, sections 1.1, 1.2, 1.3).
- 3. Using Sage to Manipulate Polynomials (Text 2, section 1.7)
- 4. Matrices and Sage-A First Taste of Matrices, Doing the RREF in Sage (Text 2, section 1.5)
- 5. Using Sage for 2-D graphs (Text 2, section 1.4)
- 6. The Derivative, Slope of Tangent, Higher-Order Derivatives (Text 2, section 1.11))
- 7. Antiderivatives (Indefinite Integral), Definite Integrals, Improper Integrals (Text 2, sec 1.12, upto sec 1.12.6))

Sympy (Reference 3).

- 1. Sympy Introductory Tutorial.
- 2. Solve an equation algebraically.
- 3. Solve a system of equations algebraically.
- 4. Solve one or a system of equations numerically.
- 5. Find the roots of a polynomial symbolically or numerically.
- 6. Solve a matrix equation algebraically.
- 7. Solve a Diophantine equation algebraically.
- 8. Solve an ODE algebraically.

More Numpy and Data Visualization (Reference 1: Chapter 3, 4)

- 1. Numpy Functions: arange, linspace, zeros, ones, random.random, reshaping. (Sec 3.1.1 to 3.1.6). Copying, Saving and Restoring, Slicing, Arithmetic Operations. (Sec 3.1.7 to 3.1.10).
- 2. Matplotlib Module: 2D Plots, Polar Plots, Pie Charts, Multiple Plots. (Sec 4.1)
- 3. Sine function and friends, Circle, Parametric Plots, Error Bars. (Sec 4.2)

- 4. Simple 2D Animation (Reference 1, Section 4.4), Making a movie of a Plot (Text 1, Section 4.4)
- 5. Famous Curves: Astroids, Ellipse, Spirals of Archimedes and Fermat (Reference 1, Sec 4.5)
- 6. 2D Plots and Fractals (Reference 1, Section 4.6)
- 7. 3D Plots (Reference 1, Section 4.7)

Numerical methods using SageMath (Reference 5: Chapter 7)(7.1 - 7.10, 7.12)

- 1) Evaluate a Taylor series numerically.
- 2) Interpolate a function using
 - a) Newton's forward interpolation.
 - b) Newton's backward interpolation.
 - c) Lagrange's Interpolation.
 - d) Newton's General Interpolation.
- 3) Find integral of function using
 - a. Trapezoidal Rule
 - b. Simpson's 1/3-rule
- 4) Find derivative of function numerically.
- 5) Solve first order differential equations numerically.
 - a) Euler method
 - b) Fourth order Runge-Kutta method
- 6) Solve algebraic equations numerically.
 - a) The Bisection method
 - b) Regula Falsi Method

References

- 1. Python for Education, Ajith Kumar B. P., 2023 https://scischool.in/python/pythonForEducation.pdf
- 2. Fundamentals of Python First Programs, Kenneth A Lambert, 2 Ed., Cengage, 2018.
- 3. Sympy Tutorial: https://docs.sympy.org/latest/tutorials/intro-tutorial/index.html
 Solving Equations: https://docs.sympy.org/latest/guides/solving/index.html
- 4. Computational Mathematics with SageMath, Paul Zimmermann, Alexandre Casamayou, https://www.sagemath.org/sagebook/english.html
- 5. SageMath Advice For Calculus, Tuan A. Le and Hieu D. Nguyen, https://users.rowan.edu/~nguyen/sage/SageMathAdviceforCalculus.pdf
- 6. Sagemath Reference: https://doc.sagemath.org/

Programming Resources

1. Python official website: https://www.python.org

Documentation: https://docs.python.org/

2. Spyder official website and documentation, https://www.spyder-ide.org/

3. MIT Courseware, Getting Started: Python and IDLE, https://web.mit.edu/6.s189/www/handouts/GettingStarted.html

4. Jupyter Notebook, https://jupyter.org/

5. Google Colaboratory (colab), https://colab.google/

6. Visual Studio Code: https://code.visualstudio.com, Documentation: https://code.visualstudio.com/docs

VS Code for Web: https://vscode.dev/

7. Replit, https://replit.com/

8. Python Virtual Environments: https://docs.python.org/3/tutorial/venv.html

9. Anaconda, Miniconda and Mamba.

Anaconda: https://docs.anaconda.com/free/anaconda/ Miniconda: https://docs.anaconda.com/free/minicoda/ Mamba: https://mamba.readthedocs.io/en/latest/

10. SageMathCloud at Cocale: https://cocalc.com/
Documentation: https://doc.cocalc.com/

Mapping of COs with PSOs and POs:

ı												
		PSO1	PSO2	PSO3	PSO4	PO1	PO2	PO3	PO4	PO5	PO6	PO7
	CO 1	2	3	2	1	3	2	3	3	2	1	2
	CO 2	3	3	2	2	3	2	3	3	2	1	2
	·											
	CO3	3	3	3	3	3	1	3	3	3	1	3

Correlation Levels:

Level	Correlation		
-	Nil		
1	Slightly / Low		
2	Moderate / Medium		
3	Substantial / High		

Assessment Rubrics:

- Assignment/ Seminar
- Internal Exam
- Viva
- Final Exam (70%)

Mapping of COs to Assessment Rubrics:

	Internal Exam	Assignment	Seminar	Viva	End Semester Examinations
CO 1	√	√	√	√	√
CO 2	√	√	√	✓	✓
CO 3	√	✓	√	√	✓

ONLINE EQUIVALENT COURSES

(These courses are currently available on the government portal SWAYAM. If they are removed in the future, the board will update the course listings accordingly)

The course in brackets, including its course code, is equivalent to the online coursespecified against it.

- 1. (MAT8EJ401 Advanced Topology) https://onlinecourses.nptel.ac.in/noc24 ma74/preview

 An Introduction to Point-Set-Topology Part-II By Prof. Anant R. Shastri | IIT Bombay
- 2. (MAT8EJ402 PARTIAL DIFFERENTIAL EQUATIONS)

https://onlinecourses.nptel.ac.in/noc24 ma73/preview

Partial Differential Equations
By Prof. Sivaji Ganesh | IIT Bombay

3. (MAT8EJ403 RINGS AND MODULES) https://onlinecourses.nptel.ac.in/noc24 cs72/preview

Modern Algebra
By Prof. Manindra Agrawal | IIT Kanpur

4. (MAT8EJ405 FOUNDATIONS OF MATHEMATICS)

https://onlinecourses.nptel.ac.in/noc24_ma42/preview

Set Theory and Mathematical Logic By Prof. Amit Kuber | IIT Kanpur

5. (MAT8EJ406 OPERATIONS RESEARCH) https://onlinecourses.swayam2.ac.in/cec24_ma05/preview

Operations Research
By Professor Bibhas C. Giri | Jadavpur University

6. (MAT1CJ101 Differential Calculus + MAT2CJ101 Integral Calculus)

https://onlinecourses.nptel.ac.in/noc24_ma47/preview

Calculus of One Real Variable
By Prof. Joydeep Dutta | IIT Kanpur

7. (MAT3CJ201 MULTIVARIABLE CALCULUS)

https://onlinecourses.nptel.ac.in/noc24 ma52/preview

Calculus of Several Real Variables

By Prof. Joydeep Dutta | IIT Kanpur

8. (MAT4CJ203 REAL ANALYSIS I)

https://onlinecourses.swayam2.ac.in/cec24 ma01/preview

Real Analysis

By Prof. Surajit Borkotokey | Dibrugarh University

9. (MAT5CJ302 ABSTRACT ALGEBRA I) https://onlinecourses.nptel.ac.in/noc24_ma50/preview

Introduction to Abstract Group Theory
By Prof. Krishna Hanumanthu | Chennai Mathematical Institute

10. (MAT5CJ303 COMPLEX ANALYSIS I + MAT6CJ304 COMPLEXANALYSIS II)

https://onlinecourses.nptel.ac.in/noc24 ma60/preview

Complex Analysis

By Prof. Pranav Haridas | Kerala School of Mathematics

ONLINE COURSES

(These courses are currently available on the government portal SWAYAM. If they are removed in the future, the board will update the course listings accordingly)

I. The course in brackets, including its course code, is equivalent to the online course specified against it.

1. (MAT1CJ101 Differential Calculus + MAT2CJ101 Integral Calculus)

https://onlinecourses.nptel.ac.in/noc24 ma47/preview

Calculus of One Real Variable

By Prof. Joydeep Dutta | IIT Kanpur

2. (MAT3CJ201 MULTIVARIABLE CALCULUS)

https://onlinecourses.nptel.ac.in/noc24_ma52/preview

Calculus of Several Real Variables

By Prof. Joydeep Dutta | IIT Kanpur

3. (MAT4CJ203 REAL ANALYSIS I)

https://onlinecourses.swayam2.ac.in/cec24 ma01/preview

Real Analysis

By Prof. Surajit Borkotokey | Dibrugarh University

4. (MAT5CJ302 ABSTRACT ALGEBRA I)

https://onlinecourses.nptel.ac.in/noc24 ma50/preview

Introduction to Abstract Group Theory

By Prof. Krishna Hanumanthu | Chennai Mathematical Institute

5. (MAT5CJ303 COMPLEX ANALYSIS I + MAT6CJ304 COMPLEX ANALYSIS II)

https://onlinecourses.nptel.ac.in/noc24 ma60/preview

Complex Analysis

By Prof. Pranav Haridas | Kerala School of Mathematics

6. (MAT8EJ401 Advanced Topology)

https://onlinecourses.nptel.ac.in/noc24 ma74/preview

An Introduction to Point-Set-Topology Part-II

By Prof. Anant R. Shastri | IIT Bombay

7. (MAT8EJ402 PARTIAL DIFFERENTIAL EQUATIONS)

https://onlinecourses.nptel.ac.in/noc24 ma73/preview

Partial Differential Equations

By Prof. Sivaji Ganesh | IIT Bombay

8. (MAT8EJ406 OPERATIONS RESEARCH)

https://onlinecourses.swayam2.ac.in/cec24 ma05/preview

Operations Research

By Professor Bibhas C. Giri | Jadavpur University

II. The following courses are intended to offer students additional credits beyond their regular credits.

1. https://onlinecourses.nptel.ac.in/noc24 ma42/preview

Set Theory and Mathematical Logic

By Prof. Amit Kuber | IIT Kanpur (For first year students)

2. https://onlinecourses.swayam2.ac.in/cec24 ma17/preview Logic and Sets

By Mr. Mohamed Nishad Maniparambath | Farook College, Kozhikode

3. https://onlinecourses.nptel.ac.in/noc24 ma89/preview

A Basic Course in Number Theory

By Prof. Shripad Garge | IIT Bombay

Model Question Papers

First Semester

FIRST SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024

MAT1CJ101 / MAT1MN100: DIFFERENTIAL CALCULUS

(Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

- 1. Determine the domain of the composite function $f \circ g$ of the functions $f(x) = \sqrt{x}$ and g(x) = x + 1. Evaluate f at the points g(3) and f(9).
- 2. Evaluate $\lim_{x\to 0} \frac{\sqrt{x+2}-\sqrt{2}}{x}$.
- 3. Does the curve $y = x^4 2x^2 + 2$ have any horizontal tangents? If so, where?
- 4. The curve $y = ax^2 + bx + c$ passes through the point (1,2) and is tangent to the line y = x at the origin. Find a, b and c.
- 5. Find $\frac{dy}{dx}$ if $2y = x^2 + siny$.
- 6. Find the normal to the curve $x^2 xy + y^2 = 7$ at the point (-1, 2).
- 7. Find the absolute extrema of $f(x) = x^{\frac{2}{3}}$ on [-2, 3).
- 8. If f'(x) = 0 at each point of an interval I, then show that f(x) = C for all x in I, where C is a constant.
- 9. Give an example of a function defined on [0,1] that has neither a local maximum nor a local minimum value at 0.
- 10. Show that $\lim_{x\to\infty} \frac{1}{x} = 0$.

Section B

- 11. Give an equation for the shifted graph of $x = 3y^2$ up 2 and right 3 units. Then sketch the original and shifted graphs together.
- 12. Is any real number exactly 1 less than its cube? Justify your answer.
- 13. Define the left-hand limit of a function f at a point x_0 . Give one example.

- 14. Find the average rate of change of f(t) = 1/t with respect to t over the interval from t = 2 to t = 3.
- 15. What is implicit differentiation? When do you need it? Give examples.
- 16. Show that the function $f(x) = x^4 + 3x + 1$ has exactly one zero in the interval [-2, -1].
- 17. Using the Sandwich Theorem to find the asymptotes of the curve $y = 2 + \frac{\sin x}{x}$.
- 18. Find a function that satisfies the following conditions and sketch its graph.

$$\lim_{x\to\pm\infty}f(x)=1, \lim_{x\to 1^-}f(x)=\infty, \lim_{x\to 1^+}f(x)=-\infty.$$

Section C

Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. (a) Find the intervals on which $f(x) = -x^3 + 12x + 5, -3 \le x \le 3$ is increasing and decreasing. Where does the function assume extreme values and what are these values?
 - (b) Show that $f(x) = \frac{x^2 + x 6}{x^2 4}$ has a continuous extension to x = 2, and find that extension.
- 20. Graph the function $y = \frac{x^3+1}{x}$.

FIRST SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024

MAT1MN101: CALCULUS

(Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

- 1. Calculate the average rate of change of the function $f(x) = x^2 + 2x$ over the interval [0, 2].
- 2. What is the slope of the tangent line to the graph of $f(x) = \frac{1}{1+x^2}$ at (-1,1).
- 3. Find the points on the graph of $f(x) = x^4 2x^2 + 2$ where the tangent line is horizontal.
- 4. Find functions f and g such that $F(x) = \sin(x^2)$ can be written as F(x) = f(g(x)). Also find F'(x).
- 5. If $y=2x^2-x+1$, find Δy approximately using derivatives when x changes from 1 to 0.5.
- 6. Find the relative extrema of $f(x) = x^4 4x^3 + 12$.
- 7. Determine the intervals where the graph of $f(x) = x^{2/3}$ is concave upward.
- 8. Find $\int (x+1)(x^2-2) dx$.
- 9. Find $\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$.
- 10. Find the average value of the function $f(x) = 4 x^2$ over the interval [-1, 3].

Section B

- 11. Find an equation of the tangent line to the graph of $x^2 + y^2 = 4$ at the point $(1, \sqrt{3})$
- 12. The volume V of a cube with sides of length 'x' inches is changing with respect to time, in seconds. How fast is the volume of the cube increasing when the side of the cube is 10 in. long and increasing at the rate of 0.5in/sec?
- 13. Find the extreme values of the function

$$f(x) = 3x^4 - 4x^3 - 8$$
 on $[-1, 2]$

14. Verify the Mean Value theorem for the function

$$f(x) = x^3 \text{ on } [-1, 1]$$

- 15. Evaluate $\lim_{n\to\infty} \sum_{1}^{n} \left[\left(\frac{k}{n} \right)^{2} + 2 \right] \left(\frac{4}{n} \right)$.
- 16. The velocity function of a car moving along a straight road is given by v(t) = t 20 for $0 \le t \le 40$. Show that at t = 40, the car will be in the same position as it was initially.
- 17. Find the area of the regions between the graphs of $y = x^2 + 2$ and y = x 1 and the vertical lines x = -1 & x = 2.
- 18. Find the volume of the solid obtained by revolving the region under the graph of $y = \sqrt{x}$ on [0,2] about the X-axis.

Section C

Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. (a) Find the points of inflection of $f(x) = (x-1)^{1/3}$.
 - (b) Find the relative extrema of $f(x) = x^3 3x^2 24x + 32$ using the second derivative test.
- 20. Sketch the graph of the function

$$f(x) = \frac{x^2}{x^2 - 1}.$$

MAT1MN102: CALCULUS OF SINGLE VARIABLE

(Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

- 1. Explain why $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.
- 2. Find $\lim_{x\to 5} (x^2 4x + 3)$.
- 3. Compute $\lim_{x \to -4} \frac{2x+8}{x^2+x-12}$
- 4. Evaluate the slope of the tangent line to $y = \sqrt{x}$ at x = 9.
- 5. Compute $\frac{dy}{dx}$ if $y = 3x^8 2x^5 + 6x + 1$.
- 6. Find $\frac{dy}{dx}$ if $y = \cos(x^3)$.
- 7. Use implicit differentiation to find dy/dx if $5y^2 + \sin y = x^2$.
- 8. Using L'Hopital's Rule Evaluate $\lim_{x\to 2} \frac{x^2-4}{x-2}$
- 9. Find the interval on which $f(x) = x^3$ is increasing.
- 10. Find all critical points of $f(x) = x^3 3x + 1$.

Section B

- 11. Find $\lim_{x \to +\infty} \frac{3x+5}{6x-8}$
- 12. Discuss the continuity of the function $f(x) = \sqrt{9-x^2}$
- 13. Find an equation for the tangent line to the curve y = 2/x at the point (2,1) on this curve.

14. Show that |x| is continuous everywhere.

15. Find
$$y'(x)$$
 for $y = \frac{x^3 + 2x^2 - 1}{x + 5}$.

16. Find
$$\frac{dy}{dx}$$
 if $y = \sin^{-1}(x^3)$ and $y = \sec^{-1}(e^x)$

17. Compute
$$\frac{d}{dx} \left[\ln \left(\frac{x^2 \sin x}{\sqrt{1+x}} \right) \right]$$

18. Use logarithmic differentiation to find $\frac{d}{dx} \left[(x^2 + 1)^{\sin x} \right]$

Section C

Answer any one of question The question carries 10 marks Maximum 10 marks

19. (a) Find
$$dy/dx$$
 if $y = \frac{\sin x}{1 + \cos x}$

(b) Evaluate
$$\lim_{x\to 0^+} \left(\frac{1}{x} - \frac{1}{\sin x}\right)$$

20. Sketch the graph of the equation $y = x^3 - 3x + 2$ and identify the locations of the intercepts, relative extrema, and inflection points.

MAT1MN103: BASIC CALCULUS

(Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

- 1. Find the domain of the function $f(x) = \sqrt{x-1}$
- 2. Solve: ln(2x 3) = 5
- 3. Show that the function $f(x) = x^3 + 2x 1$ has a zero in the interval [0,1].
- 4. Use the quotient rule to differentiate $f(x) = \frac{\sqrt{x}}{x^3+1}$
- 5. Find $\frac{dy}{dx}$ given that $y^3 + y^2 5y x^2 = -4$
- 6. Solve $\arctan(2x-1) = \frac{\pi}{4}$ for x.
- 7. Define increasing function on a interval. Give one example.
- 8. Find the points of inflection of $f(x) = x^3 6x^2 + 12x$.
- 9. Find the general solution of the differential equation $\frac{dy}{dt} = 9t^2$
- 10. Evaluate the integral $\int_{-1}^{2} (x^2 3x + 2) dx$.

Section B

- 11. Show that the functions f and g are inverses of each other, where $f(x) = 2x^3 1$ and $g(x) = \sqrt[3]{\frac{x+1}{2}}$.
- 12. Show that the limit $\lim_{x\to 0} \frac{|x|}{x}$ does not exist.
- 13. Evaluate: $\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$
- 14. Using formal definition of derivatives, evaluate f'(x) for the function $f(x) = \sqrt{x}$

- 15. Find an equation of the tangent line to the graph of $f(x) = \frac{3-\frac{1}{x}}{x+5}$ at (-1,1).
- 16. Find the extrema of $f(x) = 2x 3x^{2/3}$ on the interval [-1, 3].
- 17. Find the two x-intercepts of the function $f(x) = x^2 x 2$ and show that f'(x) = 0 at some point between the two x-intercepts.
- 18. Evaluate $\int_{0}^{2} |2x 1| dx$.

Section C

Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. Analyze and Sketch the graph of the function $f(x) = \frac{x^2 2x + 4}{x 2}$.
- 20. (a). Find the average value of $f(x) = 3x^2 2x$ on the interval [1, 4].
 - (b). Find the derivative of $F(t) = \int_{\pi/2}^{x^2} \cos t \ dt$.

FIRST SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024

MAT1MN104: MATHEMATICAL LOGIC, SET THEORY AND COMBINATORICS

(Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

- 1. Give truth tables for conjuction and disjunction of two propositions.
- 2. Rewrite the proposition "for each integer x, there exists an integer y such that x + y = 0" symbolically.
- 3. Define contradiction. Give example.
- 4. Let $A = \{a, b, x, y, z\}, B = \{c, d, e, x, y, z\}, \text{ and } U = \{a, b, c, d, e, w, x, y, z\}.$ Find $(A \cup B)'$ and $A' \cap B'$.
- 5. Let |A| = 3, |B| = 5 and $|A \cap B| = 2$. Find $|A \cup B|$.
- 6. List the elements of the Cartesian product $A \times B$, where $A = \{1, 2\}$ and $B = \{a, b, c\}$.
- 7. Let $A = \begin{bmatrix} 2 & -3 & 7 \\ 0 & 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 5 & 0 \\ 2 & 0 & -1 \end{bmatrix}$. Find A + B
- 8. Find the number of ways of drawing a red queen or a black king from a standard deck of playing cards.
- 9. Find the number of words that can be formed by scrambling the letters of the word SCRAM-BLE.
- 10. Suppose a card is drawn at random from a standard deck of playing cards. Find the probability that it will be a spade.

Section B

- 11. Show that $p \to q \equiv \sim q \to \sim p$
- 12. Simplify the set expression $(A \cap B') \cup (A' \cap B) \cup (A' \cap B')$.

- 13. Using the principle of inclusion-exclusion, find the number of elements in the union of three sets A, B, and C where $|A|=10, |B|=15, |C|=20, |A\cap B|=5, |A\cap C|=4, |B\cap C|=3,$ and $|A\cap B\cap C|=2$
- 14. Define absolute value function and draw its graph.
- 15. Find the number of positive integers ≤ 3000 and not divisible by 7 or 8.

16. Let
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 4 & -1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -2 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}$. Find AB and BA , if defined.

- 17. Find the number of groups that can be formed from a group of seven marbles if each group must contain at least three marbles.
- 18. Find the probability of obtaining at least one head when three coins are tossed.

Section C

Answer any **one** of question The question carries **10** marks Maximum **10** marks

19. Let
$$A = \begin{bmatrix} 2 & -3 \\ 5 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -3 & 5 \end{bmatrix}$ and $C = \begin{bmatrix} 0 & -2 & 1 \\ -3 & 0 & 4 \end{bmatrix}$.

- (a). Show that A + (-A) = O
- (b). Show that A(B+C) = AB + AC.
- 20. (a). Explain converse, inverse, and contrapositive of a proposition with examples.
 - (b). Verify that $\sim (p \vee q) \equiv \sim p \wedge \sim q$ and $\sim (p \wedge q) \equiv \sim p \vee \sim q$

FIRST SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024

MAT1MN105: MATRIX THEORY

(Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

1. Use parametric equations to describe the solution set of the linear equation 7x - 5y = 3

2. If
$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 4 & 2 \\ 3 & 1 & 5 \end{bmatrix}$, find $2A^T + B$

3. Give an example to show that matrix multiplication is not commutative

4. What conditions must b_1, b_2 and b_3 satisfy in order for the system of equations $x_1 + x_2 + 2x_3 = b_1$ $x_1 + x_3 = b_2$

 $2x_1 + x_2 + 3x_3 = b_3$ to be consistent

5. If $A = \begin{bmatrix} 3 & 2 & 6 \\ 0 & 1 & -2 \\ 0 & 0 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 & 7 \\ 0 & 5 & 3 \\ 0 & 0 & 6 \end{bmatrix}$, find the diagonal entries of AB by inspection.

6. If
$$A = \begin{bmatrix} 1 & 0 & 0 & -1 \\ 3 & 1 & 2 & 2 \\ 1 & 0 & -2 & 1 \\ 2 & 0 & 0 & 1 \end{bmatrix}$$
, find det(A)

7. Find adjoint of the matrix $A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 6 & 3 \\ 2 & -4 & 0 \end{bmatrix}$

8. If A, B are square matrices of same order, check whether det(A + B) = det(A) + det(B)

9. If $\mathbf{u} = (1, 3, -2, 7)$ and $\mathbf{v} = (0, 7, 2, 2)$, find the dot product of the vectors \mathbf{u} and \mathbf{v} . Also find the distance between \mathbf{u} and \mathbf{v}

10. Find the initial point of the vector that is equivalent to $\mathbf{u} = (1, 2)$ and whose terminal point is B(2, 0)

Section B

11. Solve the linear system

$$4x - 2y = 1$$
$$16x - 8y = 4$$

12. Solve by Gauss-Jordan elimination.

$$x_1 + 3x_2 - 2x_3 + 2x_5 = 0$$

$$2x_1 + 6x_2 - 5x_3 - 2x_4 + 4x_5 - 3x_6 = -1$$

$$5x_3 + 10x_4 + 15x_6 = 5$$

$$2x_1 + 6x_2 + 8x_4 + 4x_5 + 18x_6 = 6$$

13. Using the row operations find the inverse of
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$

14. If
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$
, show that $(A^{-1})^3 = (A^3)^{-1}$

15. Use row reduction to show that
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (b-a)(c-a)(c-b)$$

16. Use Cramer's rule to solve

$$x_1 + +2x_3 = 6$$

$$-3x_1 + 4x_2 + 6x_3 = 30$$

$$-2x_1 - 2x_2 + 3x_3 = 8$$

- 17. Find vector and parametric equations for the line in \mathbb{R}^2 that passes through the points P(0,7) and Q(5,0)
- 18. Find vector and parametric equations for the line in \mathbb{R}^2 that passes through the points P(0,7) and Q(5,0)

Section C

Answer any one of question The question carries 10 marks Maximum 10 marks

19. (a) Solve the linear system by Gaussian elimination

$$2x_1 + 2x_2 + 2x_3 = 0$$

$$-2x_1 + 5x_2 + 2x_3 = 1$$

$$8x_1 + x_2 + 4x_3 = -1$$

(b) If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, show that $(A^{-1})^T = (A^T)^{-1}$

20. Let $\mathbf{u}=(3,2,-1), \mathbf{v}=(0,2,-3), \mathbf{w}=(2,6,7)$. Compute $\mathbf{u}.(\mathbf{v}\times\mathbf{w}), \mathbf{u}\times(\mathbf{v}\times\mathbf{w})$ and $(\mathbf{u}+\mathbf{v})\times\mathbf{w}$

FIRST SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024

MAT1MN106 - PRINCIPLES OF MICRO ECONOMICS

(Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

- 1. Define Law of Demand.
- 2. Define market demand curve.
- 3. What is meant by Cross elasticity of demand.
- 4. Define average and marginal revenue.
- 5. What is meant by a point of inflexion?
- 6. Define an indifference map.
- 7. Explain the term 'shift' in demand curve.
- 8. Explain the meaning of Budget line.
- 9. If $TC = 5Q^2 + 12Q + 14$, find MC.
- 10. Given price equation p = 100 2q find the point elasticity of demand when q = 10.

Section B

- 11. Derive the relation between MR, AR and elasticity of demand.
- 12. What are the determinants of demand?
- 13. Explain the various assumptions on the problem of cost production.
- 14. Explain the properties of indifference curves.
- 15. Assume a four sector economy, where Y = C + I + G + (X M), $C = C_0 + bY$, $I = I_0 + aY$, $G = G_0, Z = Z_0$. Find the equilibrium level of income in terms of general parameters.
- 16. What are the criticism against utility approach?

- 17. Find the slope of the average cost curve in terms of average cost and marginal cost.
- 18. Suppose the price 'p' and quantity 'q' of a commodity are related by the equation $q = 30 4p p^2$. Find elasticity of demand at p = 2.

Section C

Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. (a) The average cost function is given by $AC = \frac{1500}{q} + 15 6q + q^2$. Find MC & TC at 50 units of output.
 - (b) Find the maximum profit: Given $TR = 1400q 6q^2$ and TC = 1500 + 80q
- 20. Use Lagrange multiplier method to optimize $z=4x^2-2xy+6y^2$ subject to the constraint x+y=72. Also estimate the effect on the value of the objective function from 1-unit change in the constant of the constraint.

FIRST SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024

MAT1VN101: PYTHON PROGRAMMING

(Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

- 1. Discuss the advantages of using Python for programming
- 2. Describe the different data types available in Python
- 3. Discuss the significance of polymorphism in object-oriented programming
- 4. Explain the process of reading from and writing to files in Python
- 5. Explain the purpose of the NumPy library in Python. Provide an example of creating a NumPy array.
- 6. Define descriptive statistics and explain their importance in data analysis
- 7. Explain the concept of ANOVA (Analysis of Variance) and its application in data analysis.
- 8. Describe the main features and functionalities of the Matplotlib library.
- 9. Discuss the use of the 'csv' module in Python with an example program
- 10. Describe the concept of formal arguments with an example

Section B

Answer any number of questions
Each question carries 6 marks
Overall Ceiling 36

- 11. Write a Python program to create a list of numbers and print the list
- 12. Write a Python program to print the first 10 natural numbers using a while loop
- 13. List and describe any four methods of file objects in Python
- 14. Explain the concept of exception handling in Python with an example
- 15. Define outliers and explain their potential impact on data analysis
- 16. Compare and contrast the use of NumPy arrays and Pandas DataFrames

- 17. Write a Python program to create a line plot using Matplotlib. Customize the plot by adding titles, labels, and a legend.
- 18. Explain the advantages of using Seaborn over Matplotlib for statistical visualizations. Provide an example of a basic plot using Seaborn

Answer any one of question
The question carries 10 marks
Maximum 10 marks

- 19. Define data visualization and explain its importance in data analysis. Provide examples of common types of data visualizations and their use cases.
- 20. List and explain any four built-in functions that can be used with classes and instances in Python.

I Semester B.Sc. (CUFYUGP) Degree Examinations October 2024

MAT1VN 102 :Statistics for Data science

(Credits: 4)

Maximum Time: 2 Hours Maximum Marks: 70

Section A

[Answer All. Each question carries 3 marks] (Ceiling: 24 Marks)

- 1. Calculate the mean of the following data set: 4, 8, 6, 5, 3, 7, 9.
- 2. Define skewness and explain its significance in descriptive statistics
- 3. Explain the concept of range with an example.
- 4. Describe the sample space and events in probability theory.
- 5. If the probability of drawing an ace from a deck of cards is $\frac{1}{13}$, what is the probability of not drawing an ace?
- 6. Given events A and B where P(A) = 0.4 and P(B) = 0.5, and they are independent, find $P(A \cap B)$.
- 7. Define a discrete random variable and give an example.
- 8. For a continuous random variable with the probability density function $f(x) = \frac{1}{10}$ for $0 \le x \le 10$ and 0 otherwise, find the probability that X is between 4 and 6.
- 9. Differentiate between a sample and a population with examples.
- 10. Explain what is meant by the level of significance in hypothesis testing

Section B

[Answer All. Each question carries 6 marks] (Ceiling: 36 Marks)

- 11. Calculate the standard deviation for the data set: 4, 8, 6, 5, 3, 7, 9.
- 12. Explain Karl Pearson's coefficient of correlation and how it is computed.
- 13. Calculate the quartile deviation for the data set: 10, 20, 30, 40, 50, 60, 70, 80, 90.
- 14. Discuss the multiplication theorem on probability with an example.
- 15. If the probability of event A is 0.5 and the probability of event B is 0.3, find the probability of both events occurring if they are independent.
- 16. Find the mean and variance of a binomial distribution with parameters n=5 and p=0.4.
- 17. Calculate the mathematical expectation of a discrete random variable with the probability distribution: P(X = 0) = 0.1, P(X = 1) = 0.2, P(X = 2) = 0.3, P(X = 3) = 0.4. (Module 3)

18. Conduct a paired t-test on the following data sets:

Set 1: 85, 90, 88, 75, 78 Set 2: 80, 85, 86, 70, 74

Section C

[Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

19. Given the data set:

X: 10, 20, 30, 40, 50

Y: 15, 25, 35, 45, 55

Perform a simple linear regression analysis and find the regression equation.

20. Given the following sample data, conduct an F-test to determine if there is a significant difference between the variances of two populations:

Sample 1: 10, 15, 10, 14, 13

Sample 2: 8, 10, 12, 14, 11

First Semester B.Sc. (CUFYUGP) Degree Examinations October 2024 MAT1FM105(1):MATRICES AND BASICS OF PROBABILITY THEORY

(Credits: 3)

Maximum Time: 1.5 Hours

Maximum Marks: 50

Section A

[Answer All. Each question carries 2 marks] (Ceiling: 16 Marks)

- 1. If $A = \begin{pmatrix} 2 & -3 \\ 1 & -4 \end{pmatrix}$ and $B = \begin{pmatrix} -5 & 7 \\ -3 & 4 \end{pmatrix}$. Find $A \times B$
- 2. Determine the value of $\begin{vmatrix} 3 & 2 \\ 7 & 4 \end{vmatrix}$
- 3. Define row matrix and column matrix.
- 4. Write the matrix equation corresponding to

$$2x - 5y = 8$$

$$2x + 9y = 1$$

$$3x + 9y = -12$$

- 5. Define population and sample
- 6. Define mid-point and relative frequency of a class and give examples.
- 7. Find mean and median of the data 12,13,16,15,13,14 and 15.
- 8. Write the sample space of an experiment consists of tossing a coin and then rolling a six-sided die.
- 9. Write the probability of the complement of an event E in terms of probability of E
- 10. Write the additional rule of probability.

Section B

[Answer All. Each question carries 6 marks] (Ceiling: 24 Marks)

- 11. Find the inverse of $A = \begin{pmatrix} 3 & -2 \\ 7 & 4 \end{pmatrix}$
- 12. Find the value of $A = \begin{vmatrix} 3 & 4 & -1 \\ 2 & 0 & 7 \\ 1 & -3 & -2 \end{vmatrix}$
- 13. Use matrices to solve the simultaneous equations

$$3x + 5y = 7$$

$$4x - 3y = 19$$

14. Draw an ogive for the frequency distribution

Class	Frequency
65-104	6
105-144	9
145-184	6
185-224	4
225-264	2
265-304	1
305-344	2

15. Two cards are selected, without replacing the first card, from a standard deck of 52 playing cards. Find the probability of selecting a king and then selecting a queen.

Section C

[Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

16. Solve the following simultaneous equations using Cramer's rule

$$x + y + z = 4$$

$$2x - 3y + 4z = 33$$

$$3x - 2y - 2z = 2$$

17. Find the sample variance and standard deviation of the data 4, 7, 6, 7, 9, 5, 8, 10, 9, 8, 7 and 10.

First Semester B.Sc. (CUFYUGP) Degree Examinations October 2024 MAT1FM105(2):MATHEMATICS FOR COMPETITIVE EXAMINATIONS - PART I

(Credits: 3)

Maximum Time: 1.5 Hours Maximum Marks: 50

Section A

[Answer All. Each question carries 2 marks] (Ceiling: 16 Marks)

- 1. How many pairs of twin primes are there between the integers 1 to 100
- 2. What is the HCF of 24, 30 and 42
- 3. $272 \times 425 \div p^2 = 400$, find p
- 4. What will be the average of first 100 natural numbers
- 5. An article is bought for Rs. 250. What should be its selling price, so as to gain 10% as profit.
- 6. What would be the simple interest obtained on an account of Rs. 8930 at the rate of 8% per annum after 5 year.
- 7. What will be the angle between the two hands of a clock at 9:50 AM
- 8. If the speed of a boat in still water is 8km/h and the rate of stream is 4km/h, then find upstream speed of the boat.
- 9. What is the missing term in the series 4, 12, 36, —, 324, 972
- 10. What is the cube root of -5832

Section B

[Answer All. Each question carries 6 marks] (Ceiling: 24 Marks)

- 11. Arrange the fractions $\frac{3}{5}$, $\frac{7}{9}$, $\frac{11}{13}$ in decreasing order.
- 12. The present age of Karan is 5 times the age of Shivam. After 10 years, Karan will be 3 times as old as Shivam. What are the present ages of Karan and Shivam.
- 13. If 6 persons working 8h a day earn Rs. 8400 per week, then how much 9 persons working 6h a day will earn per week.
- 14. A car covers a distance of 200km in 2h 40min, whereas a jeep covers the same distance in 2h. What is the ratio of their speeds.
- 15. A sum of Rs. 10000 amount to Rs.11449 in two years, when the interest compounded annually. What is the rate of interest per year.

[Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

- 16. (a). If $\frac{3}{a} = \frac{18}{b} = \frac{24}{c} = \frac{9}{5}$, find the value of a + b + c.
 - (b) The annual increase in percentage of a population is 5% and the present number of people is 16000. What will be the population in 3 years.
- 17. (a) Raju purchased a chair with 3 successive discounts of 20%, 12.5% and 5%. What will be the actual deduction.
 - (b) A train overtakes two persons who are walking at the rate of 4km/h and 8km/h in the same direction and passes them completely in 18 an 20 seconds respectively. Find the length of the train.

FIRST SEMESTER BSc (CUFYUGP) DEGREE EXAMINATION OCTOBER 2024

MAT1CJ102/MAT2CJ102: ELEMENTARY NUMBER THEORY

(Credits: 4)

Time: Two hours Maximum: 70 marks

Section A

Answer any number of questions

Each question carries 3 marks; ceiling 24 marks

- 1. If g.c.d(a,b) = d , then show that g.c.d($\frac{a}{d}$, $\frac{b}{d}$) = 1
- 2. State and prove Euclid's lemma
- 3. Find the g.c.d of 12378 and 3054 using Euclidean algorithm.
- 4. State the fundamental theorem of arithmetic. Find the canonical representation of 360
- 5. If g.c.d(a,b) = 1, then show that g.c.d(a+b,a-b) = 1 or 2
- 6. State the condition on which the linear Diophantine equation ax+by = c is solvable. Check whether 14x+35y=93 is solvable or not
- 7. If p is a prime and p/ab, then show that p/a or p/b
- 8. Find $\varphi(360)$, where φ is the Euler's phi function
- 9. State Euler's theorem and deduce Fermat's little theorem from Euler's theorem
- 10. If $a \equiv b \pmod{n}$ and m/n, then show that $a \equiv b \pmod{m}$ also

Section B

Answer any number of questions Each question carries 6 marks; ceiling 36 marks

- 11. Show that the expression $\frac{a(a^2+2)}{3}$ is an integer for every integer $a \ge 1$.
- 12. Show that if a and b are integers not both of which are zero, there exist integers x and y such that g.c.d(a,b)= ax + by
- 13. Solve the linear Diophantine equation 172x+20y = 1000
- 14. Find all primes less than or equal to 50 using the sieve of Eratosthenes
- 15. Find the remainder when 1! + 2! + 3! +.....+100! Is divided by 12
- 16. Solve the system of linear congruences $x \equiv 2 \pmod{3}, x \equiv 3 \pmod{5}, x \equiv 2 \pmod{7}$ using Chinese remainder theorem.
- 17. For each positive integer $n \ge 1$, show that $n = \sum_{d/n} \varphi(d)$, where φ is the Euler's phi function and the sum being extended over all positive divisors of n
- 18. Show that $2^{340} \equiv 1 \pmod{341}$ using Fermat's theorem

Section C

Answer any ONE question Each question carries 10 marks

- 19. State and prove Fermat's theorem
- 20. State and prove Wilson's theorem.

Model Question Papers

Second Semester

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION

APRIL 2025

MAT2CJ102: INTEGRAL CALCULUS

(Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

- 1. Evaluate $\int (2\cos 2x 3\sin 3x) dx$.
- 2. Find the norm of the partition $P = \{0, 1.2, 1.5, 2.3, 2.6, 3\}$ of the interval [0, 3].
- 3. Show that the value of $\int_{0}^{1} \sqrt{1 + \cos x} \ dx$ cannot possibly be 2.
- 4. Find dy/dx if y satisfies

$$y = \int_{0}^{tanx} \frac{dt}{1+t^2}$$

- 5. Show that $\lim_{x\to\infty} \ln x = \infty$ and $\lim_{x\to 0^+} \ln x = -\infty$.
- 6. Evaluate

$$\lim_{x \to 0} \frac{1 - \cos x}{x + x^2}$$

7. Evaluate

$$\int \frac{dx}{\sqrt{e^{2x} - 6}}$$

8. Express as a sum of partial fractions

$$\frac{2x^3 - 4x^2 - x - 3}{x^2 - 2x - 3}$$

- 9. Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines y = 1, x = 4 about the line y = 1.
- 10. Define length of a curve y = f(x) from a to b. Give an example.

Section B

Answer any number of questions Each question carries 6 marks Overall Ceiling 36 11. Evaluate

$$\int \frac{18 \tan^2 x \ \sec^2 x}{(2 + \tan^3 x)^2} dx$$

- 12. Find the area of the region between the parabola $y = x^2$ and the x-axis on the interval [0, b] using a definite integral.
- 13. Show that if f is continuous then $\int_{0}^{1} f(x)dx = \int_{0}^{1} f(1-x)dx.$

14. Find

$$\lim_{x \to \infty} x^{1/x}$$

15. Find

$$\int e^x \cos x \ dx$$

- 16. A pyramid 3 m high has a square base that is 3m on a side. The cross section of the pyramid perpendicular to the altitude x m down from the vertex is a square x m on aside. Find the volume of the pyramid.
- 17. Evaluate

$$\int \frac{3x+2}{\sqrt{1-x^2}} \ dx$$

18. The line segment $x=1-y, 0 \le y \le 1$ is revolved about the y-axis to generate a cone. Find its lateral surface area.

Section C

Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. (a) State and prove the Mean Value theorem for definite integrals.
 - (b) Solve the initial value problem

$$e^y \frac{dy}{dx} = 2x, \quad x > \sqrt{3}; \ y(2) = 0$$

20. (a) Find the derivative of $y = sec^{-1}x$, |x| > 1.

(b) Find the length of the curve $y = (x/2)^{2/3}$ from x = 0 to x = 2.

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION APRIL 2025

MAT2MN101: DIFFERENTIAL EQUATIONS AND MATRIX THEORY

(Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

- 1. Verify that $y = xe^x$ is a solution to the differential equation y'' 2y' + y = 0.
- 2. Solve $\frac{dy}{dx} = \frac{-x}{y}, y(4) = -3.$
- 3. Solve 4y'' + 4y' + 17y = 0, y(0) = -1, y'(0) = 2.
- 4. Evaluate $\mathcal{L}(1)$ using the definition of Laplace transform.
- 5. Evaluate the inverse transform of $\frac{-2s+6}{s^2+4}$.
- 6. Give an example of a vector space V and subspaces W_1 and W_2 such that $\{0\} \neq W_1 \subsetneq W_2 \subsetneq V$.
- 7. Check whether the system $x_1 + x_2 = 1$, $4x_1 x_2 = -6$ and $2x_1 3x_2 = 8$ is consistent or not.
- 8. Determine whether the set of vectors $u_1 = (2, 1, 1)$, $u_2 = (0, 3, 0)$ & $u_3 = (3, 1, 2)$ in \mathbb{R}^3 is linearly independent or not.
- 9. Write the conditions for convergence of a Fourier series.
- 10. Write the general form of a second order linear PDE and classify its different cases.

Section B

Answer any number of questions
Each question carries 6 marks
Overall Ceiling 36

- 11. Solve $\frac{dy}{dx} + y = f(x), y(0) = 0$ and $f(x) = \begin{cases} 1, 0 \le x \le 1 \\ 0, x > 0 \end{cases}$
- 12. Solve $2xydx + (x^2 1) dy = 0$.
- 13. Evaluate $\mathfrak{L}^{-1}\left[\frac{s^2+6s+9}{(s-1)(s-2)(s+4)}\right]$.
- 14. Show that vectors $u_1 = (1,0,0), u_2 = (1,1,0) + u_3 = (1,1,1)$ form a basis for the vector space \mathbb{R}^3 .

- 15. Find a basis of the solution space for the system of equations: $x_1 x_2 2x_3 = 0$, $2x_1 + 4x_2 + 5x_3 = 0$ and $6x_1 3x_3 = 0$.
- 16. Find the eigen values and eigenvectors of $A = \begin{bmatrix} 3 & 4 \\ -1 & 7 \end{bmatrix}$.
- 17. Expand $f(x) = \begin{cases} 0, -\pi < x < 0 \\ \pi x, 0 \le x < \pi \text{ in a Fourier series} \end{cases}$
- 18. Solve $\frac{\partial^2 u}{\partial x^2} = 4 \frac{\partial u}{\partial y}$

Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. (a) Use Gauss-Jordan Elimination to solve $x_1 + 3x_2 2x_3 = -7$, $4x_1 + x_2 + 3x_3 = 5$, $2x_1 5x_2 + 7x_3 = 9$.
 - (b) Balance the Chemical Equation: $C_2H_6 + O_2 \rightarrow CO_2 + H_2O$.
- 20. Expand $f(x) = x^2, 0 < x < L$
 - (a) in a cosine series
 - (b) in a sine series
 - (c) in a Fourier series.

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION

APRIL 2025

MAT2MN102: CALCULUS AND MATRIX ALGEBRA

(Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

1. Evaluate
$$\int (3x^6 - 2x^2 + 7x + 1) dx$$

2. Compute
$$\int_1^0 \sqrt{1-x^2} dx$$

3. Suppose that a particle moves along a coordinate line so that its velocity at time t is $v(t) = 2 + \cos t$. Find the average velocity of the particle during the time interval $0 \le t \le \pi$.

4. Evaluate
$$\int_0^2 x(x^2+1)^3 dx$$

5. Evaluate
$$\int \frac{dx}{x^2 + x - 2}$$

6. Let
$$f(x,y,z) = \sqrt{1-x^2-y^2-z^2}$$
 Find $f\left(0,\frac{1}{2},-\frac{1}{2}\right)$ and the natural domain of f .

7. Define level curve and level surface.

8. Evaluate
$$\lim_{(x,y)\to(4,-2)} x \sqrt[3]{y^3 + 2x}$$

9. Find the product **AB** for the following matrix

$$\mathbf{A} = \begin{pmatrix} 4 & 7 \\ 3 & 5 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 9 & -2 \\ 6 & 8 \end{pmatrix}$$

10. Define inner product in \mathbb{R}^n

Section B

Answer any number of questions Each question carries 6 marks Overall Ceiling 36

11. Evaluate
$$\int x^2 \sqrt{x-1} dx$$

12. Find the total area between the curve $y = 1 - x^2$ and the x-axis over the interval [0, 2]

- 13. Evaluate $\int e^x \cos x dx$.
- 14. Find the arc length of the curve $y=x^{3/2}$ from (1,1) to $(2,2\sqrt{2})$
- 15. Evaluate $\int \frac{dx}{x^2 + x 2}$.
- 16. Let $f(x,y) = x^2y + 5y^3$.
 - (a) Find the slope of the surface z=f(x,y) in the x-direction at the point (1,-2).
 - (b) Find the slope of the surface z=f(x,y) in the y-direction at the point (1,-2).
- 17. Use Gauss-Jordan elimination to solve

$$x_1 + 3x_2 - 2x_3 = -7$$
$$4x_1 + x_2 + 3x_3 = 5$$
$$2x_1 - 5x_2 + 7x_3 = 19$$

18. Evaluate $\int_{-1}^{1} |e^x - 1| dx$

Section C

Answer any **one** of question The question carries **10** marks Maximum **10** marks

- 19. Find the area of the region enclosed by $x = y^2$ and y = x 2
- 20. Find the eigenvalues and eigenvectors of

$$\mathbf{A} = \left(\begin{array}{rrr} 1 & 2 & 1 \\ 6 & -1 & 0 \\ -1 & -2 & -1 \end{array} \right)$$

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION APRIL 2025

MAT2MN103: ANALYSIS AND SOME COUNTING PRINCIPLES

(Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

- 1. Write the first five terms of the sequence $\{a_n\}$, where $a_n = (-1)^{n+1}(\frac{2}{n})$.
- 2. Give an example of a bounded sequence which is neither monotone nor convergent.
- 3. Find the sum of the series $\sum_{n=1}^{\infty} \frac{2}{4n^2-1}$
- 4. Write the number $2i^3 3i^2 + 5i$ in the form a + ib,
- 5. Find the polar form of the complex number $z = -\sqrt{3} 1$.
- 6. Sketch the graph of the equation |z + 3i = 2| in the complex plane.
- 7. Evaluate $\lim_{z \to 2i} (z^2 \overline{z})$.
- 8. Show that the function $f(z) = z^2 iz + 3 2i$ is continuous at the point $z_0 = 2 i$.
- 9. How many distinguishable permutations of the letters in the word "BANANA" are there?
- 10. Show that $nC_r = nC_{n-r}$.

Section B

Answer any number of questions Each question carries 6 marks Overall Ceiling 36

- 11. Show that the Harmonic Series $\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \cdots$ converges.
- 12. Use the Limit Comparison Test to determine the convergence or divergence of the series $\sum_{n=1}^{\infty} \frac{2^n+1}{5^n+1}$.
- 13. Find the four fourth roots of z = 1 + i.
- 14. Use formal definiton to find the derivative of $f(z) = z^2 5z$.
- 15. Verify Cauchy-Riemann Equations for the polynomial funtion $f(z) = z^2 + z$.
- 16. Find the harmonic conjugate of the function $u(x,y) = x^3 3xy^2 5y$.

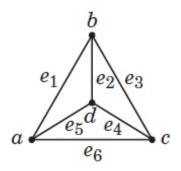
- 17. If n pigeons are assigned to m pigeonholes, then prove that one of the pigeonholes must contain at least $\lfloor (n-1)/m \rfloor + 1$ pigeons.
- 18. Suppose that two cards are selected at random from a standard 52-card deck. What is the probability that both cards are less than 10 and neither of them is red?

Answer any one of question The question carries 10 marks Maximum 10 marks

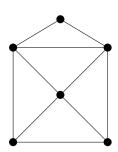
- 19. (a). State Alternating Series Test.
 - (b). Prove that the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ coneverges conditionally.
- 20. (a). Find the real and imaginary parts u and v of the complex function $f(z) = z^3 2z + 6$ as functions of x and y.
 - (b). Show that the function f(z) = x + 4iy is not differentiable at any point z.

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION APRIL 2025

MAT2MN104: GRAPH THEORY AND AUTOMATA


(Credits: 4)

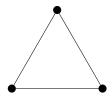
Time: Two Hours Maximum: 70 Marks


Section A

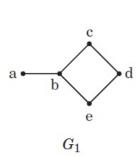
Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

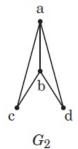
- 1. Define a simple graph. Give a simple graph with 4 vertices.
- 2. Is a graph with four vertices a, b, c and d with deg(a) = 3, deg(b) = 4, deg(c) = 2 and deg(d) = 4 possible?
- 3. Draw the complete bipartite graph $K_{3,3}$.
- 4. Define planar graph. Give example.
- 5. Consider the following graph G

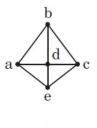
- (a). Find a path in G
- (b). Find a cycle in G
- (c). Give an independent set for G
- 6. Define Eulerian path and Hamiltonian Path.
- 7. Define a tree. Give example.
- 8. Verify Euler's formula for the following graph.



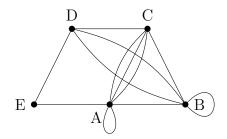
- 9. Compute the length of the word a^3b^2 over $\{a, b\}$
- 10. What are the characteristics of a finite state automtaton(FSA)?


Section B

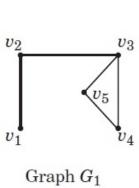

Answer any number of questions
Each question carries 6 marks
Overall Ceiling 36

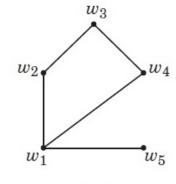

- 11. Draw K_4 . Label its vertices and draw its adjacency matrix.
- 12. Let e denote the number of edges of a graph G with n vertices $v_1, v_2, ..., v_n$. Then prove that $\sum_{i=1}^n \deg(v_i) = 2e$.
- 13. (a). Define a connected graph.
 - (b). Give an example for a connected graph.
 - (c). Is the following graph connected? Justify your answer.

14. Determine if each graph in the following figure has an Eulerian path. If so, find it.


 G_3

- 15. Find the chromatic number of the cycle graph C_n .
- 16. Prove that every connected graph has a spanning tree.
- 17. Let $\sum = \{0,1\}, A = \{0,01\}$, and $B = \{\lambda,1,110\}$. Find the concatenations AB and BA.
- 18. Create a grammar to produce $\{a^nba \mid n \geq 1\}$ over $\{a,b\}$


Section C


Answer any one of question The question carries 10 marks Maximum 10 marks

19. (a). Cosider the following graph. Find the degree of each of its vertices.

(b). Determine whether the following graphs G_1 and G_2 are isomorphic.

Graph G_2

- 20. (a). A connected planar graph has 17 edges, dividing the plane into 9 regions. How many vertices does the graph have?
 - (b). Prove that the complete graph K_5 is nonplanar.
 - (c). Prove that $K_{3,3}$ is nonplanar.

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION APRIL 2025

MAT2MN105: VECTOR SPACES AND LINEAR TRANSFORMATIONS (Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

- 1. Give an example for a subset of \mathbb{R}^2 that is not a subspace of \mathbb{R}^2
- 2. Give a geometric description to the solution set of $\begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ 3 & -6 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- 3. Use the Wronskian to show that $f_1 = x, f_2 = \sin x$ are linearly independent vectors in $C^{\infty}(-\infty,\infty)$
- 4. Find the coordinate vector of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ relative to the standard basis for M_{22}
- 5. Explain why the vectors $\mathbf{u} = (-3,7)$ and $\mathbf{v} = (5,5)$ form a basis for \mathbb{R}^2
- 6. Use matrix multiplication to find the reflection of (-1,2) about the line y=x
- 7. Discuss the geometric effect on the unit square of multiplication by a diagonal matrix $A = \begin{bmatrix} k_1 & 0 \\ 0 & k_2 \end{bmatrix}$ in which the entries k_1 and k_2 are positive real numbers $(\neq 1)$
- 8. Find the eigenvalues of $A = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}$
- 9. find the orthogonal projection of the vector $\mathbf{x} = (1,5)$ onto the line through the origin that makes an angle of $\frac{\pi}{6}$ with the positive x-axis
- 10. Show that the matrices $A = \begin{bmatrix} 1 & 1 \\ 3 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 \\ 3 & -2 \end{bmatrix}$ are not similar.

Section B

Answer any number of questions
Each question carries 6 marks
Overall Ceiling 36

11. Determine whether the vectors $\mathbf{u}=(1,1,2), \mathbf{v}=(1,0,1), \mathbf{w}=(2,1,3)$ span the vector space \mathbb{R}^3

- 12. Determine whether the vectors $\mathbf{u} = (1, 2, 2, -1), \mathbf{v} = (4, 9, 9, -4), \mathbf{w} = (5, 8, 9, -5)$ in \mathbb{R}^4 are linearly dependent or linearly independent
- 13. Show that the vectors $\mathbf{u} = (1, 2, 1), \mathbf{v} = (2, 9, 0), \mathbf{w} = (3, 3, 4)$ form a basis for \mathbb{R}^3
- 14. Find a basis for the solution space of the homogeneous linear system, and find the dimension of that space

$$x_1 + x_2 - x_3 = 0$$

$$-2x_1 - x_2 + 2x_3 = 0$$

$$-x_1 + x_3 = 0$$

- 15. Use matrix multiplication to find the image of the vector (2, -1, 2) if it is rotated 30° counterclockwise about the positive x-axis.
- 16. Show that the operator $T: \mathbb{R}^2 \leftarrow \mathbb{R}^2$ defined by the equations $w_1 = 2x_1 + x_2$ $w_2 = 3x_1 + 4x_2$ is one-to-one, and find $T^{-1}(w_1, w_2)$
- 17. Find bases for the eigenspaces of $A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$
- 18. Show that composition of rotation is commutative

Answer any one of question The question carries 10 marks Maximum 10 marks

19. Let V be the set of 2×2 matrices with real entries. Show that V is avector space under matrix addition and scalar multiplication

20. Let
$$A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}$$

- (a) Find the eigenvalues of A
- (b) For each eigenvalue λ , find the rank of the matrix $\lambda I A$
- (c) Is A diagonalizable? Justify your conclusion

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION OCTOBER 2024

MAT2MN106 - OPTIMIZATION TECHNIQUES IN ECONOMICS

(Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

- 1. Define Gini Coefficient.
- 2. Define Global maxima and minima.
- 3. What is a non negativity constraints?
- 4. What is an open input-output model?
- 5. Explain discriminating monopolist.
- 6. What is an Exogenous variable?
- 7. Explain the Leontief production.
- 8. State the Young's theorem.
- 9. What is a constrained optimization?
- 10. Define Lorenz curve.

Section B

Answer any number of questions Each question carries 6 marks Overall Ceiling 36

- 11. From the data points, find the equation of the line which best fits the data points (1,2),(3,4),(5,3) and (6,6)
- 12. Find the value of the Jacobian determinant from the following two functions; $y_1 = 2x_1 + 3x_2$ and $y_2 = 4x_1^2 + 12x_1x_2 + 9x_2^2$
- 13. Show whether the following function $x^4 + x^2 + 6xy + 3y^2$ has global minima or maxima.
- 14. Explain the major causes of income inequality.
- 15. Examine whether the input-output system with the following co-efficient matrix is feasible:

$$\left[\begin{array}{cc} 1/2 & 3/5 \\ 1/3 & 5/7 \end{array}\right]$$

- 16. Present the Kuhn-Tucker formulation for a constrained minimization problem.
- 17. Explain the Hawkins Simon conditions.
- 18. Explain the significance of explicit functions form \mathbb{R}^n to \mathbb{R}^m .

Answer any one of question The question carries 10 marks Maximum 10 marks

- 19. Explain the determination of equilibrium prices in an economy with two sectors using inputoutput model.
- 20. Explain the method of least squares and derive the normal equations.

II Semester B.Sc. (CUFYUGP) Degree Examinations April 2025

MAT2VN101: Linear Algebra for Machine Learning

(Credits: 4)

Maximum Time: 2 Hours

Maximum Marks: 70

Section A

[Answer All. Each question carries 3 marks] (Ceiling: 24 Marks)

- 1. Explain the idea of elimination in solving a system of linear equations.
- 2. Solve the following system using matrix notation:

$$\begin{cases} 2x + 3y = 5\\ 4x - y = 1 \end{cases}$$

- 3. State the rules for matrix addition and scalar multiplication.
- 4. Given a 2×2 matrix A, find its inverse if it exists:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

5. Write the factorization A = LU for the following matrix:

$$A = \begin{pmatrix} 2 & 1 \\ 6 & 5 \end{pmatrix}$$

- 6. Define the transpose of a matrix and provide an example.
- 7. Determine the nullspace of the matrix A:

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \end{pmatrix}$$

8. Define rank and compute the rank of the following matrix:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 6 \end{pmatrix}$$

- 9. What is the dimension of the row space of a matrix?
- 10. Explain the concept of orthogonality between two vectors.

Section B

[Answer All. Each question carries 6 marks] (Ceiling: 36 Marks)

11. Find the least squares approximation of the overdetermined system:

$$\begin{cases} x + y = 2 \\ x + 2y = 3 \\ x + 3y = 5 \end{cases}$$

12. Apply the Gram-Schmidt process to orthogonalize the set of vectors:

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

13. Compute the eigenvalues of the following matrix:

$$A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}$$

14. Diagonalize the matrix A if possible:

$$A = \begin{pmatrix} 4 & -1 \\ 2 & 1 \end{pmatrix}$$

- 15. Prove that a symmetric matrix has real eigenvalues.
- 16. Determine if the following matrix is positive definite:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

- 17. Show that similar matrices have the same eigenvalues.
- 18. Perform Singular Value Decomposition (SVD) for the matrix:

$$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

Section C

[Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

19. Find the complete solution to the system Ax = b where:

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ 1 & 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix}$$

20. Discuss the Singular Value Decomposition (SVD) of a matrix. Provide an example and explain how it can be used in applications such as data compression or noise reduction.

SECOND SEMESTER B.Sc.(CUFYUGP) DEGREE EXAMINATION APRIL 2025

MAT2VN102: R PROGRAMMING

(Credits: 4)

Time: Two Hours Maximum: 70 Marks

Section A

Answer any number of questions
Each question carries 3 marks
Overall Ceiling 24

- 1. Discuss the different data types available in R. Provide examples of each data type.
- 2. Explain what vectors are in R.
- 3. Explain the use of the 'dplyr' package for data manipulation
- 4. Explain the basics of creating plots using the 'ggplot2' package in R
- 5. How to import CSV data in R
- 6. Explain the concepts of mean, median, standard deviation, and variance.
- 7. Explain the concept of hypothesis testing
- 8. Define machine learning
- 9. Discuss the chi-square test and its applications
- 10. Explain the different types of loops available in R

Section B

Answer any number of questions
Each question carries 6 marks
Overall Ceiling 36

- 11. Explain how matrices and arrays are used in R. Write R code to create and perform operations on matrices and arrays.
- 12. Discuss the measures of dispersion: range, variance, and standard deviation. Write R code to calculate these measures for a given dataset.
- 13. Discuss the concept of probability distributions and random variables. Provide examples of different types of probability distributions available in R and how to generate random samples from them.

- 14. Describe simple linear regression and its applications. Provide R code to perform a simple linear regression analysis and interpret the results.
- 15. Describe the use of basic charts in data visualization. Explain how to create the following charts in R: Pie chart, Bar chart, Histogram, Boxplot, and Scatterplot.
- 16. Describe dimensionality reduction techniques
- 17. Explain the differences between supervised, unsupervised, and reinforcement learning.
- 18. Explain the ANOVA test and how it is used.

Answer any **one** of question
The question carries **10** marks
Maximum **10** marks

- 19. Describe how functions are defined and used in R. Write an example function that takes input arguments and returns a result.
- 20. Compare the challenges and benefits of applying machine learning in HR, finance, and marketing domains.

Second Semester B.Sc. (CUFYUGP) Degree Examinations April 2025 MAT2FM106(1):GRAPH THEORY AND LPP

(Credits: 3)

Maximum Time: 1.5 Hours Maximum Marks: 50

Section A

[Answer All. Each question carries 2 marks] (Ceiling: 16 Marks)

- 1. Define a graph and give an example.
- 2. Draw the graphs K_4 and $K_{2\ 3}$
- 3. Draw any two spanning subgraphs of K_5 with at least 6 edges.
- 4. Define walk, trail and cycle in a graph.
- 5. Define bridge in a graph and give an example.
- 6. State the Whitney's theorem.
- 7. Define linear inequality in two variables.
- 8. Graph the linear inequality $2x 3y \le 12$.
- 9. Write the standard maximization form of a LPP
- 10. Define basic feasible solution of a LPP

Section B

[Answer All. Each question carries 6 marks] (Ceiling: 24 Marks)

- 11. Prove that in a graph G there is an even number of odd degree vertices.
- 12. Let G be an acyclic graph with n vertices and k connected components. Show that G has n-k edges.
- 13. Solve the following LPP

Minimize
$$z = 2x + 4y$$

subject to $x + 2y \ge 10$
 $3x + y \ge 10$
 $x \ge 0, y \ge 0$

14. Andrew Crowley plans to start a new business called River Explorers, which will rent canoes and kayaks to people to travel 10 miles down the Clarion River in Cook Forest State Park. He has \$45,000 to purchase new boats. He can buy the canoes for \$600 each and the kayaks for \$750 each. His facility can hold up to 65 boats. The canoes will rent for \$25 a day, and the kayaks will rent for \$30 a day. How many canoes and how many kayaks should he buy to earn the most revenue if all boats can be rented each day?

15. Write the dual of linear programming problem

$$\begin{array}{lll} \text{Maximize} & z=2x_1+5x_2\\ \text{subject to} & x_1+x_2 & \leq 10\\ & 2x_1+x_2 & \leq 8\\ & x_1\geq 0,\ x_2\geq 0 \end{array}$$

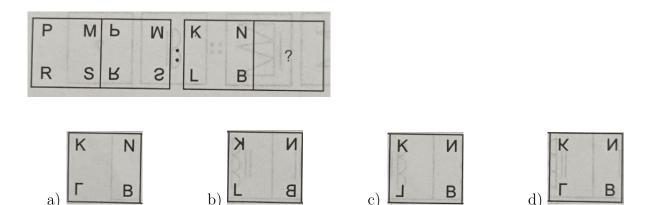
Section C

[Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

- 16. If G is a connected graph with n vertices and n-1 edges, then show that G is tree.
- 17. Use Simplex method to solve

$$\begin{array}{lll} \text{Minimize} & w=3y_1+2y_2\\ \text{subject to} & y_1+3y_2 & \leq 6\\ & 2y_1+y_2 & \geq 3\\ & y_1\geq 0,\ y_2\geq 0 \end{array}$$

Second Semester B.Sc. (CUFYUGP) Degree Examinations April 2024 MAT2FM106(2):MATHEMATICS FOR COMPETITIVE EXAMINATIONS - PART II


(Credits: 3)

Maximum Time: 1.5 Hours Maximum Marks: 50

Section A

[Answer All. Each question carries 2 marks] (Ceiling: 16 Marks)

- 1. DI is related to 49, in the same way FD is related to —
- 2. What comes next in the series 5, 11, 23, 47, 95, ?
- 3. Daya has brother Anil, Daya is the son of Chandra, Bimal is Chandra's father. In terms of relationship, what is Anil to Bimal?
- 4. If South-West becomes North, then what will North-East be?
- 5. Complete the second pair in the same way as the first pair.

- 6. By looking in a mirror, it appears that it is 6:30 in the clock. What is the real time.
- 7. The ratio of an interior angle to the exterior angle of a regular polygon is 5:1. What is the number of sides in the polygon.
- 8. Which number is opposite to face 3?

- 9. Write the wrong term in the series P3C, R5F, T9I, V12L ...
- 10. Draw the Venn diagram which represents week, day and year

Section B

[Answer All. Each question carries 6 marks] (Ceiling: 24 Marks)

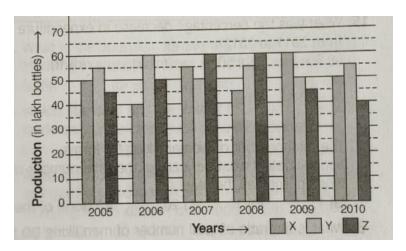
- 11. In a certain code, SOBER is written as RNADQ. How LOTUS can be written in that same code?
- 12. Rishabh starts from point A and travels 4 Km in North direction to reach point B, Now he turns towards South-East and travels 5 Km to reach point C and finally he turns towards North and travels another 4 Km to reach point D. Calculate the shortest distance between points A and D and in which direction is point A with respect to point D?
- 13. Count the number of triangles and squares in the given figure.

- 14. (A) A statement is given followed by three arguments. Choose the answer **Statement**: All scientists working in America are talented. Some are Indian **Conclusions**
 - 1. None of the Indian scientists is talented
 - 2. Some talented Indian scientists have migrated
 - 3. All talented scientists are in America
 - 4. Some indian scientists are talented
 - a) Only conclusion 1 b) Only conclusion 2 c) Only conclusion 3 d) Conclusions 2 and follows follows follows 4 follows
 - (B) Some statements and conclusions are given. Choose the conclusions which are logically follows from the given statements.

Statements

All dogs are rats

All rats are crows


All crows are parrots

Conclusions

- 1. All dogs are parrots
- 2. Some parrots are dogs
- 3. Some crows are dogs
- 4. All rats are dogs
- a) Only conclusion 1 b) Conclusions 1 and c) Conclusions 1,2 and d) Only conclusion 4 follows 2 follows 3 follows follows
- 15. If in a row, Rohan is 10th from left and Mukesh is 13th from right and there are four persons in between them, then find the maximum and minimum number of persons in the row.

Section C [Answer any one. Each question carries 10 marks] $(1 \times 10 = 10 \text{ Marks})$

16. The production of three different flavours X,Y and Z by a company is shown in the Bar Chart.

- (A) The total production of flavour Z in 2007 and 2008 is what percent of the total production of flavour X in 2005 and 2006?
- (B) For which flavour was the average annual production maximum in the given period.
- 17. (A) Arathi and Subhash are the children of Mr. and Mrs. Shah. Ritu and Sakthi are the children of Mr. and Mrs. Mehra. Sourabh and Ritu are married to each other and two daughters Mukthi and Sruthi are born to them. Sakthi is married to Reena and two children Subhash and Reshma are born to them. How Arathi related to Sruthi.
 - (B) A boy rode his bicycle Northwards, then turned left and rode 1 Km and again turned left and rode 2 Km. He found himself exactly 1 Km West of his starting point. How far did he ride Northwards initially?