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Abstract This paper proposes a higher order implicit numerical scheme to approximate the
solution of the nonlinear partial differential equation (PDE). This equation is a simplified form
of Navier—Stoke’s equation also known as Burgers’ equation. It is an important nonlinear PDE
which arises frequently in mathematical modeling of turbulence in fluid dynamics. In order to
handle nonlinearity a nonlinear transformation is used which converts the nonlinear PDE into
alinear PDE. The linear PDE is semi-discretized in space by method of lines to yield a system
of ordinary differential equations in time. The resulting system of differential equations is
investigated and found to be a stiff system. A system of stiff differential equations is further
discretized by a low-dispersion and low-dissipation implicit Runge—Kutta method and solved
by using MATLAB 8.0. The proposed scheme is unconditionally stable. Moreover it is simple,
easy to implement and requires less computational time. Finally, the adaptability of the
scheme is demonstrated by means of numerical computations by taking three test problems.
The present implicit scheme have been compared with existing schemes in literature which
shows that the proposed scheme offers more accuracy with less computational time than the
numerical schemes given in Jiwari (Comput Phys Comm 183:2413-2423, 2012), Kutluay
et al. (J Comput Appl Math 103:251-261, 1998), Kutluay et al. (J Comput Appl Math
167:21-33, 2004).
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Introduction

Burgers’ equation is an important nonlinear partial differential equation from fluid mechanics
which not only describes various phenomena such as mathematical model of turbulence, but
also has got various applications in many fields of science and engineering. We consider the
following nonlinear partial differential equation

Uy +uu, =vityy, x €1[0,1] and re][0,T] (1a)
with initial condition
u(x,0) = uo(x), (1b)
and boundary conditions
u@,t) =u(l,r) =0 (1o

where v > 0 is the kinematic viscosity parameter and u(x) is given sufficiently smooth
function. This equation appears in various areas of applied mathematics such as modeling of
fluid dynamics, boundary layer behavior, turbulence, gas dynamics and shock wave forma-
tion. Burgers’ equation can be considered as an analogue to Navier—Stoke’s equation as this
single equation has convection term, diffusion term and time dependent term. Solution of this
equation exhibit a delicate balance between the nonlinear advection and the diffusion terms.
Moreover it is considered as a test problem for validating several numerical algorithms. In
1915, Bateman [3] introduced Burgers’” equation and gave its steady state solutions. It was
later treated by Johannes Martinus Burgers who considered it as a mathematical model of
turbulence [6] and studied its various aspects [6,7]. Benton and Platzman [4] surveyed the
exact solutions of the one-dimensional Burgers’ equation. Since various problems can be
modeled through the Burgers’ equation, many researchers have shown enormous interest in
its solution.

So far, various numerical algorithms such as Galerkin finite element method [32], auto-
matic differentiation [2], meshless method of lines [16], Crank—Nicolson scheme [19], finite
element method [31], group explicit method [11] Haar wavelet quasilinearization approach
[18], explicit and exact-explicit finite difference methods [21], lattice Boltzmann method
[14], homotopy analysis method [27] have been developed. Kadalbajoo, Sharma and Awasthi
[20] used a parameter-uniform implicit difference scheme for solving time dependent Burg-
ers’ equation. Bhatti and Bhatta [5] used Galerkin formulation of Burgers’ equation and
matrix formulation in which system of equations in time variable is solved using Runge—
Kutta method of order four. Analytical methods for solving Burgers’ equation is given in
[28], while an explicit analytical solution of generalised Burger and Burger—Fisher equa-
tions using Homotopy perturbation method is discussed in [26]. Arora and Singh [1] have
developed numerical solution of Burgers’ equation with modified cubic B-spline differential
quadrature method while Ganaie and Kukreja [13] used cubic Hermite collocation method
to solve Burgers’ equation. Mukundan and Awasthi [24] presented a comparative study of
three level explicit and implicit numerical scheme for Burgers’ equation. In [23], authors
used variational iteration method to solve fractional coupled Burgers’ equation. A detailed
survey of various techniques to solve Burgers’ equation both numerically and analytically is
discussed in [10]. In 2015, Mukundan and Awasthi [25] introduced some efficient numerical
techniques to solve one dimensional Burgers’ equation. In 2016, Guo et al. [15] proposed
higher order compact scheme based on finite volume method to solve Burgers’ equation.
Three-dimensional coupled viscous Burgers’ equation is solved by modified cubic B-spline
differential quadrature method [33].
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In this paper, Burgers’ equation is solved numerically by combinations of a nonlinear
transformation, method of lines and implicit Runge—Kutta method. The nonlinear transfor-
mation reduces the Burgers’ equation into a linear diffusion equation. The method of lines
is a semi-discretization technique, introduced by Rothe [29] in 1930, in which discretization
is performed along the spatial direction alone. The MOL technique transforms the linear
diffusion equation into a system of first order ordinary differential equations. This system
of equations is investigated and found to be highly stiff so that explicit methods cannot be
employed to find its numerical solution. Hence the stiff system is solved by an implicit low-
dispersion and low-dissipation Runge—Kutta method of order four. The proposed numerical
scheme is explained in Sect. 2. Its stability is discussed in Sect. 3. Three test problems are
presented in Sect. 4 to demonstrate the applicability and accuracy of the proposed numerical
scheme. Conclusions are drawn in Sect. 5.

Numerical Scheme

In this paper, we propose a hybrid scheme which comprises of nonlinear transformation,
method of lines and low-dispersion and low-dissipation implicit Runge—Kutta method of
order four.

Nonlinear Transformation

The given nonlinear parabolic one-dimensional Burgers’ equation Eq. (1) with Dirichlet
boundary conditions is linearized into diffusion equation

b1 = Vx (2a)
with initial condition
1 X
¢(x,0) =exp (—2—/ uo(S)d%‘) ., 0=x=1, (2b)
v.Jo
and boundary conditions
$x(0,1) =0=¢x(1,1), 1=0. (2¢)
by using the nonlinear transformation, also known as Cole—Hopf transformation [9,17]
u= —2v¢—x. 3)
¢

The linear diffusion equation Eq. (2) is semi-discretized in the spatial direction by method
of lines. This procedure leads to a stiff system of ordinary differential equations in the time
variable ‘#’ which can be integrated in time.

Method of Lines
The linear diffusion equation Eq. (2) is semi-discretized in the spatial variable by method of
lines (MOL). The spatial domain [0, 1] is divided into N equal subintervals, 0 = x¢p < x1 <

.-+ < xy = 1| with constant spacing h = (1)/N and x; = ih fori =0, 1,2,... N.In MOL,
the second order spatial derivative ¢, approximated as follows

1
Gxx (i, 1) = h—2(¢i+1(l) —2¢i(t) +¢i—1()), i=0,1,2,...N.
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where ¢; (1) = ¢ (x;,1),i =0,1,2,..., N.
Substituting in Eq. (2), we obtain a system of ordinary differential equations with initial
condition

dd),‘ v
=7 D= 7700 = 26i(t) + i1 (1)

1 [
¢i(0)=exp(—5/o uo(E)dE), i=01,2..N

where, ¢;(t) = ¢(x;,t), taking into account the discretization of boundary condition
¢_1(t) = ¢1(t) and pn+1(t) = ¢dn—1(t), we obtain a system of ordinary differential equa-
tions which can be written in vector form

d@_v

77 = 250, 20) =2 “

where, ®(t) = [po(?), ..., pn (D)L, Py = [¢9(0), ..., ¢n(0)]7 is the initial condition and
Sis (N 4+ 1) x (N + 1) tridiagonal matrix given by

-2 2

Stiff Differential Equations

The system of ordinary differential equations Eq. (4) is a stiff system. A system of equations
with constant coefficients

dd
— =P
dt

where P isa (N + 1) x (N + 1) constant matrix and ® (1) = [¢o(?), ..., dn ()], is called
a stiff system if the range of the magnitudes of the eigenvalues is large (|A|max /A min > 1)
and the solution is desired over a large span of the independent variable 7. Stiff systems are
associated with numerical difficulties which can be overcome by using implicit methods.
With implicit methods there is no restriction on the time step due to numerical stability.
Stiffness of the system Eq. (4) can be proved as follows.

The system of ordinary differential equations Eq. (4) is proved a stiff system by finding
all eigenvalues of the matrix S . The eigenvalues A; of S in Eq. (4) are given by

Det(S — A1) =0, ©)
after simplification we get,
(A +272=4) On-1 (1) =0 (6)
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where
—-24+n) 1
1 —-24+11
OnvA) =
. . 1
1 -2+ A1) 1
1 -2+
N i
_ (_1\N 2
= (-1 11:[1 (4cos —2(N N +k)
using Eq. (7) in Eq. (6), we have
N-1
e+ =4[] (4005 — +x) =0
N-1
LA +2) <4cos m—l—k)zo

1

J
which gives
A=0, or A=-2 or
M= —dcos? L i=0,1,2,....N
2N
[Almin =0, and  |Alpax =4

Hence, we have

|)"|max/|}‘-|min > 1

(M

Therefore, the system of ordinary differential equations Eq. (4) is a stiff system. The variation
of stiffness ratio with nodal points is given in Fig. 1. Since the stiffness ratio is very high ,
the ode is a stiff system where explicit methods fails to provide a numerical solution.

Discretization of Time Variable

The system of stiff differential equations is discretized in time variable by a low-dispersion
and low-dissipation implicit Runge—Kutta method of order four. The time interval [0, T'] is

Stiffness ratio(log scale)—>

15 1 1

10 20 30 40 50 60 70 80
N(linear scale)—>

Fig. 1 Variation of stiffness ratio with nodal points(N)

90 100 110
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divided into M equal subintervals 0 = 10 < 1 < --- <ty = T with Ar = T/M, i.e
t, =nAt,n=0,1,2,..., M.

General form of p stage Runge—Kutta method to solve a system of ordinary differential
equation of the form

do
_— = F Cb,t N (b O == CD
T (®,0) 0) 0
is given by
p
" ="+ biKij, i=0,1,....N, n=0,1,...,M—1 (8)
j=1
where,
P
Kij = AF(Q" + > ajpKip. ta +cjA), i=0,1,....N. j=1.....p. (9
p=1

where, ®" = [¢g, ¢], ..., ¢5’V]T, F(®,1) = h—UZSCD(t), At is the time step, b;, ¢; and ajg
are constants for, j =1,..., p.

Butcher [8] gave another notation to represent a p stage Runge—Kutta scheme in a coef-
ficient table,

¢l A
10
- (10)
where ¢ = (cy, ¢y, ..., cp) represents position of stage values within the time step, b =
(b1, b1, ..., b)) represents weight coefficients, in Eq. (8) and matrix A is the matrix of g

as given in Eq. (9)

We choose a three stage fourth order low-dispersion and low-dissipation implicit Runge—
Kutta scheme presented in [30]. This scheme is more accurate than the standard fourth-
order explicit RK scheme and three-stage fourth-order singly diagonal implicit Runge—Kutta
scheme.

In the present scheme matrix A is given by

ai; 0 0
A=\|ay an O
as) asx as

values of A, b, ¢ of Eq. (10) are constants as given in Table 1.
Finally, numerical solution of the Burgers” Equation Eq. (1) in terms of numerical solution
of the linear diffusion equation Eq. (2) and nonlinear transformation Eq. (3) is given by

n = nl
i+ s

o g
=—(§ P =P ] 0N a1 M—1 (D
3 &

where ¢{’ is the approximate value of ¢ (x,7) atx = x; and t = t,.
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Table 1 Coefficients for fourth

order, implicit Runge—Kutta Parameter Value

scheme an 0.377847764031163
as 0.385232756462588
am 0.461548399939329
a3 0.675724855841358
an —0.061710969841169
as3 0.241480233100410
by 0.750869573741408
by —0.362218781852651
b3 0.611349208111243
e 0.257820901066211
) 0.434296446908075
e 0.758519768667167

Stability

Implementing the three stage fourth order low-dispersion and low-dissipation implicit
Runge—Kutta scheme to the system of stiff differential equations Eq. (4) we get,

"t = @" 4+ b1 K| 4+ brKin + b3Kiz, i =0()N, n=0(1)M (12)
where, K;1 = %S(CD” +anKiy),let A = % so we obtain
Ki1 = A} (AS®") (13)
where A =1 — ASay;
Kiz = AS(®" + a1 Ki1 + ankKi2)
— Kin = Ay (ASO") Ay (14)

where Az = I — ASax and Ay = I + ran A}'S
and

Kiz = AS(®" + a31 K1 + a3 Kiz + az3K3)
= Ki3 = A} ASP") A3 (15)

where A3z =1 — ASazz and Az =1 + ka31A]_]] S+ )\,a32A2_2]A25
Substituting Eqs. (13), (14) and (15) in Eq. (12) we get

" = d"C, n= oM (16)
where C is a matrix of order (N 4+ 1)X (N + 1) given by
C =1+AS(b1A}] +b2A5) Ay + b3AG4 A3) (17)

Now we will investigate the eigenvalues of the matrix C.
In Sect. 2.3 we have shown that eigenvalues of the matrix S say (;) is given by

Ai=—40052;—1<], i=0.1,2.....N. (18)

where S is real (N + 1) X (N + 1) tridiagonal matrix.
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Table 2 Comparison of the
numerical solution with the exact
solution at different space points
of Example l at 7 = 1forv =1
and At = 0.0001

Table 3 Comparison of the
numerical solution with the exact
solution at different space points
of Example 1 at 7 = 1 for

v =0.1 and At = 0.0001

Table 4 Comparison of exact
solution and the computed
solution at different times for
Example I at v = 0.05,

Ax = 0.0125 and At = 0.0001

@ Springer

X

Computed solution

Exact solution

N =60 N =80 N =100
0.1 0.000016 0.000016 0.000016 0.000016
0.2 0.000030 0.000030 0.000030 0.000030
0.3 0.000042 0.000042 0.000042 0.000042
0.4 0.000049 0.000049 0.000049 0.000049
0.5 0.000052 0.000052 0.000052 0.000052
0.6 0.000049 0.000049 0.000049 0.000049
0.7 0.000042 0.000042 0.000042 0.000042
0.8 0.000030 0.000030 0.000030 0.000030
0.9 0.000016 0.000016 0.000016 0.000016
X Computed solution Exact solution
N =60 N =80 N =100

0.1 0.06631 0.06631 0.06632 0.06632
0.2 0.13120 0.13121 0.13121 0.13121
0.3 0.19277 0.19278 0.19279 0.19279
0.4 0.24802 0.24804 0.24805 0.24804
0.5 0.29189 0.29191 0.29192 0.29192
0.6 0.31604 0.31606 0.31608 0.31607
0.7 0.30806 0.30809 0.30810 0.30809
0.8 0.25369 0.25372 0.25373 0.25372
0.9 0.14605 0.14607 0.14607 0.14607
X T Exact solution Computed solution
0.25 1.0 0.18215 0.18214

1.5 0.13261 0.13260

2.0 0.10322 0.10322
0.50 1.0 0.35893 0.35893

1.5 0.25900 0.25899

2.0 0.19625 0.19624
0.75 1.0 0.48484 0.48481

1.5 0.32167 0.32164

2.0 0.21989 0.21987
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Eigenvalues of the matrix A is given by (see [12], p. 18)

1+4xa11cos2§—]\’], i=0.1.2.....N.

Similarly, eigenvalues of the matrix Ajj is given by

1+4Aagzcosz%, i=0,1,2,...,N.

and eigenvalues of the matrix A3z is given by

1+4Aa330052;—1\l/, i=0.1,2.....N.

Table 5 Comparison between exact and existing numerical solutions of Example 1 for v = 0.01 at different

times 7 and x

X T [22] At = 0.0001 [21] At = 0.001 Present method Ar = 0.001 Exact
0.25 04 0.34819 0.34244 0.34198 0.34191
0.6 0.27536 0.26905 0.26897 0.26896
0.8 0.22752 0.22145 0.22148 0.22148
1.0 0.19375 0.18813 0.18819 0.18819
3.0 0.07754 0.07509 0.07511 0.07511
0.50 04 0.66543 0.67152 0.66228 0.66071
0.6 0.53525 0.53406 0.52999 0.52942
0.8 0.44526 0.44143 0.43938 0.43914
1.0 0.38047 0.37568 0.37454 0.37442
3.0 0.15362 0.15020 0.15018 0.15018
0.75 0.4 0.91201 0.94675 0.91636 0.91026
0.6 0.77132 0.78474 0.76964 0.76724
0.8 0.65254 0.65659 0.64846 0.64740
1.0 0.56157 0.56135 0.55658 0.55605
3.0 0.22874 0.22502 0.22482 0.22481

Table 6 Comparison of the Computed solution

numerical solution with the exact

Exact solution

solution at different space points N =40 N =280 N =100

of Example 2at 7 = 1 forv = 1

and At = 0.0001 0.1 0.000017 0.000016 0.000016 0.000016
0.2 0.000031 0.000031 0.000031 0.000031
0.3 0.000043 0.000043 0.000043 0.000043
0.4 0.000051 0.000051 0.000051 0.000051
0.5 0.000053 0.000053 0.000053 0.000053
0.6 0.000051 0.000051 0.000051 0.000051
0.7 0.000043 0.000043 0.000043 0.000043
0.8 0.000031 0.000031 0.000031 0.000031
0.9 0.000017 0.000016 0.000016 0.000016
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Eigenvalues of the matrix A; is given by (see [12], Theorem 1.4, p. 18)

1 —4hay; cos?

i
—m, i=0,1,2,...,N.
1+ 4hay; cos? 35

Similarly, eigenvalues of the matrix A3 is given by

B 4)a3; cos? g—li, B 4)azy cos? % 1 — 4day; cos? g—A’, i 012 N
l+4)\a11cos2% l+4ka22cos2%1+4Aa1100s2%7 T
The matrix C is given by
C=1+21Sb1A] + b Ay Ay + b3 A A3) (19)
Isrl:ll;‘lalcs Zﬁ?ﬁ;sgv?tﬁftgleexact Computed solution Exact solution
solution at different space points N =20 N =30 N =40
of Example 2 at 7 = 4 for
b — 0.0125 and Af = 0.001 0.1 0.02331 0.02332 0.02332 0.02332
0.2 0.04661 0.04663 0.04664 0.04663
0.3 0.06992 0.06994 0.06995 0.06994
0.4 0.09323 0.09325 0.09326 0.09325
0.5 0.11650 0.11652 0.11653 0.11651
0.6 0.13956 0.13958 0.13959 0.13957
0.7 0.16123 0.16134 0.16137 0.16138
0.8 0.17465 0.17510 0.17526 0.17542
0.9 0.14499 0.14615 0.14657 0.14705
rsl:?lll)liieoi aggﬁi“zg;%&izmd X T Exact solution Computed solution
;ﬂ;&‘;?ea; ‘iilf‘ffr:en(t)_‘lifnes for 0.25 2.0 0.06951 0.06957
Ax =0.0125 and Az = 0.001 2.5 0.04425 0.04429
3.0 0.02776 0.02779
0.50 2.0 0.11020 0.11031
2.5 0.06727 0.06734
3.0 0.04106 0.04111
0.75 2.0 0.08868 0.08878
2.5 0.05142 0.05148
3.0 0.03044 0.03048
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Table 9 Comparison between exact and existing numerical solutions of Example 2 for v = 0.1 at different

times 7 and x

X T [22] At = 0.0001

[18] At = 0.001

Present method At = 0.001 Exact

0.25 0.4 0.32091

0.6 0.24910
0.8 0.20211
1.0 0.16782
3.0 0.02828
0.50 0.4 0.58788
0.6 0.46174
0.8 0.37111
1.0 0.30183
3.0 0.04185
0.75 0.4 0.65054
0.6 0.50825
0.8 0.39068
1.0 0.30057
3.0 0.03106

0.30887
0.24609
0.19952
0.16557
0.02775
0.56979
0.45790
0.36734
0.29829
0.04105
0.62567
0.48715
0.38525
0.29578
0.03043

0.31751
0.24613
0.19955
0.16560
0.02776
0.58452
0.45796
0.36739
0.29834
0.04107
0.64560
0.50266
0.38532
0.29585
0.03044

0.31752
0.24614
0.19956
0.16560
0.02775
0.58454
0.45798
0.36740
0.29834
0.04106
0.64562
0.50268
0.38534
0.29586
0.03044

Table 10 Comparison of computed solution with the exact solution at different times and spatial points for
Example 3 at v = 0.0125,0.01, Ax = 0.0125 and At = 0.001

T X v =0.0125

v =0.01

Computed solution

Exact solution

Computed solution

Exact solution

1 0.25 0.01870
0.50 0.03470
0.75 0.03570
2 0.25 0.01700
0.50 0.03068
0.75 0.02997
3 0.25 0.01541
0.50 0.02712
0.75 0.02537

0.01870
0.03471
0.03570
0.01700
0.03068
0.02998
0.01541
0.02712
0.02537

0.01524
0.02846
0.02961
0.01413
0.02578
0.02569
0.01308
0.02336
0.02241

0.01524
0.02846
0.02961
0.01413
0.02579
0.02569
0.01308
0.02336
0.02242

Table 11 Errors in terms of Ly norm and Lo norm at v = 1,0.1,0.02,0.005, 7 = 1, 2, 3 and At = 0.001,
corresponding to example 3

v T=1 T=2 T=3

Ly Lono Lo Loo Ly Lo
1 1.25725E-06 1.77802E-06  7.26719E-11 1.02783E-10 1.38427E-14  3.50952E-14
0.1 7.49648E-05 1.09803E-04  3.05870E-05  4.34716E-05 1.27895E-05 1.80961E-05
0.02 2.14782E-06  3.54995E-06 1.54623E-06  2.87520E-06 1.33643E-06  2.55146E-06
0.005  2.21117E-06  3.19673E-06  2.01722E-06  2.90996E-06 1.84120E-06  2.65184E-06
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Eigenvalues of the matrix C say (A¢;) is given by (see [12], p. 18)

] ( by by 1 — 4rap; cos? ;—A’,

i
Ac.:l—4kcosz— — + - :
' 2N \ 1 +4rajjcos? 35, 14 4ran cos® I 1+ 4rayy cos? T

by
+—
1 + 4haz3 cos? T5

2 7

2 mi 2 mi
y (1 4)a31 cos ;—K, 4)az; cos % 1—4)az; cos” 35 ))’ i — O(DN.

B 1+4xray cos? g—lf, B 1+4X1as; cos? % 1+4Xraq; cos? %

All the eigenvalues are clearly less than one for all values of A > 0 as by < Oand az; < 0.
Hence the fully discretized scheme is unconditionally stable for all values of A > 0.

Numerical Computations

In order to demonstrate the efficiency of proposed numerical method several numerical exper-
iments are carried out. Numerical method adopted in this paper is a combination of Cole-Hopf
transformation, method of lines and implicit Runge—Kutta method. Numerical results gener-

0.4
Numerical Solution Numerical Solution
—*— Exact Solution

0.45 —+*— Exact Solution i 0.35

Solution(u)——>
Solution(u)-—>

Numerical Solution
—*— Exact Solution
0.2
s 1 o1s
’é‘ s T=5
5 £ e
5 2
3 § o1
0.05
o X
02 0.4 06 0.8 1
X——> X—>
(c) (d)

Fig. 2 Numerical solutions of Example | at different times for Ax = 0.0125 and different values of v and
At,av =1, Ar =0.0001,bv = 0.1, Ar = 0.01,cv = 0.01, Az = 0.01 and d v = 0.005, Az = 0.01
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ated by proposed method are compared with exact. Implementation of the numerical method
has been carried out using MATLAB-8.0.

Example 1 Consider the Burgers’ Eq. (1) with the initial condition
u(x,0) =sin(rx), 0<x <1, (20)
and the homogeneous boundary conditions
u,1) =u(1,t) =0, 0<t<T. 21
Burgers’ equation is converted to linear diffusion equation by means of Cole—Hopf transfor-
mation, which is then solved by the method of separation of variables. The exact solution of

the problem is

D1 Cnexp (—n2n2vt) nsin(nmwx)
Co + Xp2 | Cyexp (—n?m?vt) cos(nmx)

u(x,t) =2mv (22)

0.5

Numerical Solution Numerical Solution
0.45 —%— Exact Solution 0.45 —*— Exact Solution

0.4

Solution(u)-—>
Solution(u)-—>

Xem> X——>
(@ (b)
0.1
Numerical Solution Numerical Solution
—*— Exact Solution 0.09 —*— Exact Solution
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X-—> X-—>
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Fig. 3 Numerical solutions of Example 2 at different times for Ax = 0.0125 and different values of v and
At,av =1, Ar =0.0001,bv = 0.1, Ar = 0.001, cv = 0.01, At = 0.01 andd v = 0.005, At = 0.1
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where
! 1
Co = / exp |——[1 - cos(nx)]] dx, 23)
0 2y
1
C, = / exp [—L[l — cos(nx)]] cos(nmx)dx, 24)
0 2wv

Example 2 Next, we consider Burgers’ equation with the following initial condition
u(x,0)=4x(1—-x), 0<x<1, 25)

and boundary condition

u0,1) =0=u(l,t), 0<t<T. (26)
The exact solution of the problem is
°  Dyexp (—n*m?vt) nsin(nmwx
(. 1) = 2y —2onzt Dn &P (o vt) nsintor) @)

Do + >0 Dy exp (—n?m2vr) cos(nmx)

Solution(u)—>
Solution(u)-—>

t—>
X——>

(b)

Solution(u)-->

)
N
N
W

SRR
AR
N \\\\\\\\\\\\\M

Solution(u)—>
o
o

W

\"
N

\!

X—->

(d)

Fig. 4 Numerical solution profile for Example 1 av = 1, At = 0.001; b v = 0.1, At = 0.01; c v = 0.02,
At =0.01andd v = 0.01, At = 0.01
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where we note that the Fourier coefficients Dy and D,, are the following
! 1
Doy = / exp {——[;;2(3 - 2x)]] dx, (28)
0 3v

1
D, = / exp {—i[x2(3 - 2x)]] cos(nmx) dx. (29)
0 3U

Example 3 We also consider Burgers’ equation
U + Uy =viyy, x €[0,1] and ¢t €0, T] (30a)
on 0 <x <1 with the boundary conditions
u@,1) =0=u(l,1), 0<t=<T. (30b)

and initial condition ) )
u(x,0) = 22T (30¢)
2 + cos(mx)

The exact solution for this problem is
v exp(—rrzvt) sin(7rx)

2 + exp(—m2vt) cos(x) G

u(x,t) =

£y

4

Solution(u)——>

o
o

co

X—=>

(a)

Solution(u)-—>
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Fig. 5 Numerical solution profile for Example 2a v = 1, At = 0.001; b v = 0.1, At = 0.01; c v = 0.02,
At =0.0l andd v = 0.01, Ar = 0.01
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A comparison of numerical results obtained by the proposed numerical method with
the exact solution for Example 1 has been presented in Tables 2—4. In Table 2, results are
tabulated at different space points for v = 1, Ar = 0.0001 and T = 1, while in Table 3,
v = 0.1, At = 0.0001 and 7 = 1. Numerical solutions are computed at different spatial
points and time levels in Table 4. The proposed numerical scheme is compared with existing
numerical schemes which include explicit finite difference method, least-squares quadratic
B-spline finite element method and Haar wavelet method. The numerical results computed
using the proposed scheme for N = 180 are tabulated in Table 5 and compared with existing
schemes and it indicates that present numerical method is better than the schemes given in
[21,22].

Comparison of numerical and exact solution of Example 2 at different space points for
v =1, At = 0.0001, T = 1 and v = 0.0125, At = 0.001, T = 4 are tabulated in
Tables 6-7. Table 8 shows the comparison between numerical and exact solutions at different
times levels and at different spatial points. Tabulated results indicates that numerical results
presented in this paper lies very close to the exact solution and the accuracy increases as the
number of nodal points increases. Table 9 shows comparison between proposed numerical
method with N = 180 and existing numerical schemes in [18,22]. The numerical schemes
mentioned in [22] give solution for very small A7 (Ar = 0.0001) while the present scheme
provide better solution even for At = 0.001. Hence, very small value of At is not required
for computing the numerical solution which in turn reduces the computational time. Most
of the numerical schemes fails to capture the physical behavior of solution for very small
value of kinematic viscosity. In Example 3 we repeated our experiment with small value of
kinematic viscosity. In Table 10, a comparison between computed solution and exact solution
is presented for v = 0.0125,0.01 at time 7 = 1, 2, 3, Ax = 0.0125 and A7 = 0.001. From
the Table it is evident that even for small value of kinematic viscosity there is excellent
agreement between the exact and computed solutions. We computed L, and L errors at
T = 1,2, 3 and kinematic viscosity v = 1, 0.1, 0.02, 0.005. Results are reported in Table 11.
It shows that the present numerical scheme is accurate even for small value of kinematic
viscosity.

Figures, 2 and 3, indicate that the numerical results obtained by the proposed method are
comparatively in good agreement with analytical solution for modest values of kinematic
viscosity, v. In order to show the physical behavior of the given problem, we give surface
plots of the computed solutions for different values of kinematic viscosity, v in Figs. 4, 5.

Conclusions

The nonlinear Burgers’ equation is reduced to linear diffusion equation by using a non-
linear transformation. The linear diffusion equation is then semi-discretized in variable
‘x’ by method of lines which results in a stiff system of first order ordinary differential
equations. This stiff system of ordinary differential equations is solved by low-dispersion
and low-dissipation implicit Runge—Kutta method of order four. Numerical results are
compared with exact solutions at different times, for modest values of kinematic viscos-
ity. Tables and Figures indicate that computed results are reasonably in good agreement
with the exact solution. Comparison with the existing numerical schemes shows that
the numerical scheme introduced in this paper is efficient than the schemes given in
[18,21,22]. This method is fourth order accurate in time and second order accurate in
space.
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