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Abstract— Due to fast growth of temporal databases has made 
temporal data mining mandatory for knowledge discovery. Temporal 
association rule classification, a sub-task of temporal mining, 
integrates association rule mining and classification. The growth and 
increased complexities in temporal databases have necessitated this 
research work to propose techniques that enhance the process of 
associative mining and classification. Hierarchical partitioning with 
frequent pattern list with multiple projection pruning and 2-Step 
Associative rule Classification with Temporal characteristic 
(HM2ACT) is proposed to solve the issues and designed enhanced 
temporal association rule classification algorithm. The experimental 
results demonstrated that the proposed algorithm produces high 
quality rules and improved classification performance. 

Keywords— Temporal Association Rule Mining; Association 
Rule Classification; Hierarchical Partitioning. 

I.  INTRODUCTION  
Advances in information technology have enhanced the 
collection, storing and processing of various sources of data in 
recent decades. Data mining techniques has been applied in 
various fields like Satellite research, Health care and Market 
research. Many researchers discussed about the numerous data 
mining techniques and its applications. Temporal databases 
such as stock market and manufacturing information, 
multimedia and web information incorporate the time to 
produce high-level builds that is useful in temporal 
applications. 

Temporal database mining discovers knowledge and patterns 
from temporal databases which includes time characteristics in 
the database. The temporal database consists of many 
significance and complication of the time attribute. A lot of 
diverse kinds of patterns are of exists in the temporal mining. 

Association rule mining is the most important data mining 
technique, the pattern identification task works with patterns 
(native behavior of the database) and frequent patterns 

(patterns that happen recurrently in the dataset). The 
Association rule mining methods can be grouped into two 
types, such as the candidate generation and testing method and 
the pattern growth approach. Examples of the candidate 
generation and testing approach include algorithms proposed 
by Agrawal & Srikant [1], Agrawal et al. [2], El-Hajj et al.[6], 
Savasere et al. [17], among which Apriori is the most 
frequently used algorithm. Candidate generation and testing 
approach may take a large overhead of Input and output, when 
large number of frequent patterns occurs. The pattern growth 
method comprises FP-Growth, Tree-projection and H-Mine 
[13]. A frequent pattern growth approach uses the FP-Tree to 
preserve the database structure, instead of creating candidates 
in each and every time. FP Growth approach mines the FP-
Tree recurrently by building conditional trees that are of the 
similar order of magnitude in amount as the frequent pattern. 
Many researcher have compared the performance of these 
candidate generate and tests and the pattern growth 
approaches are Liu et al. [9], Sengar et al. [18] and Ratre et al. 
[16]. According to their results, the pattern growth approach is 
more effective. But the approach requires extra memory space 
to store the transitional data structure. However, this huge 
construction of conditional trees makes these algorithms not 
scalable to mine large datasets.  

The aim of the temporal associative classification is to build a 
temporal classifier which can predict the classes of test data 
objects. A number of works have provided the evidence that 
associative classification algorithms are able to extract 
classifiers competitive with those formed by decision trees 
rule induction and probabilistic procedures. The associative 
temporal classification technique uses temporal support and 
temporal confidence measures to evaluate the temporal rule 
quality.  

The remainder of this paper is structured as follows. Section 2 
introduces the review of literature of association rule based 
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classifier. The proposed methodology is presented in Section 
3. Section 4 shows the results and discussion, and Section 5 
concludes this paper. 

II. REVIEW OF LITERATURE 

The performance of frequent itemsets mining and association 
rule generation depends on two parameters, min_conf and 
min_sup, which are user-specified. Correct selection of these 
two parameters is critical and is highly dependent on the 
nature of database [9], [16], [18]. In general, a high min_sup 
will result with very few association rules, while a low 
min_sup will generate very high association rules and both 
these situations degrade the performance of associative 
mining. This difficulty brought forward a series of automated 
methods for the calculation of min_sup and min_conf. More 
often, the optimal values for these parameters are selected 
after repeated runs of the algorithms and choose the set which 
produces best results. This process is time consuming and 
hence it is not efficient.  Pyun & Yun [14] , Quang et al. [15] 
have suggested the use of mine-top-k frequent patterns for 
solving this issue.  Again, the correct specification of k is very 
important and is dependent on the user. Thus, in order to 
design an efficient frequent pattern mining algorithm, it is 
necessary to have optimal min_sup and min_conf values. 

The major drawback while using associative rule classification 
is the huge quantity of rules generated. In general, the 
associative rule classification algorithm uses only one pruning 
technique before actual classification with the purpose of 
decrease the number of rules. These techniques can be applied 
either during association rule generation (pre pruning 
approach) or after association rule generation (post pruning 
approach). 
 
Mandeep Mittal et al [11] proposed a temporal association rule 
mining method to discover relationships between items which 
satisfy certain timing constraints.  Batal I et al [4] presented 
the Minimal Predictive Temporal Patterns framework to 
produce a lesser set of predictive and non-spurious patterns. 
Liu et al. [7]  and Liu et al. [8] proposed a database coverage 
pruning technique is to improve the process of association rule 
classification which give assurance that each rule can at least 
classify one training instance correctly. 
 
Detecting correlations in data that possess a time component is 
the major aim of temporal association rule mining. As 
extensions to the traditional [2] method numerous classes of 
temporal association rule generation methods have been 
proposed. Chang et al. [5] discover a novel model of mining 
universal temporal association rules from huge databases 
where the showing periods of the items are permitted to be 
dissimilar from one another. 
 

The major concerns of temporal association rule classifier are 
(i). Fails with huge sized temporal databases (Scalability 
issue), (ii). Selection of two thresholds, min_supp and 
min_conf, (iii). Generates huge number of association rules, 
(iv). Satisfy the two important factors of classification, 
namely, accuracy and speed. 

 

III. METHODOLOGY  
The proposed algorithm, Hierarchical partitioning with 
frequent pattern list with multiple projection pruning and 2-
Step Associative rule Classification with Temporal 
characteristics (HM2ACT) aims to solve these concerns using 
an amalgamation of techniques, namely, clustering, and 
automatic estimation of parameters, rule reduction and 
classification. The proposed method consists of six steps as 
explained below.  

A. Step 1. Pre-processing: Automatic Estimation of 
Parameters 

The pre-processing performs two tasks, namely, partitioning 
the dataset and automatic estimation of the two parameters, 
min_supp and min_conf. Temporal Associative Rule 
Classification (TARC) is proposed for the parameter selection 
and provided an automated method to resolve the difficult of 
user supplied minimum support and minimum confidence 
thresholds using polynomial function. The Automated 
Minimum Support Estimation Method (AMSEM) procedural 
steps are presented in Fig.1. 

 
Fig 1. Steps in Automated Minimum Support Estimation Method 

B. Step 2. Hierarchical Partitional with FrequentPattern List 
(HP-FPL) 

The HP-FPL algorithm was designed to address the issue of 
scalability with frequent pattern mining algorithms. A detailed 
description HP-FPL can be found in Tseng et al. [20]. 
Frequent Pattern List Construction and Frequent Pattern List 
Mining are used for generation of frequent patterns and 
mining from the FPL, respectively [19]. 
 

For each partitions of the temporal database repeat the following 
steps 
 Calculate the support of each item in Pi  
 Estimate the minimum and maximum support 
 Initial min_sup (P) = Average support (As) 
 Estimate min_conf using lift measure (confidence lift) 
 Group itemsets in P according to their length 
 Calculate cumulative support as product of support of each 

itemset group 
 Estimate collective confidence measure using min_sup and 

collective support of each itemset group  
 Identify itemset group as frequent if and only if cumulative 

support  min(min_sup(items)) in itemset group. 
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In the mining process, the last part dataset is essential for 
mining frequent itemsets. Obviously, each item node of the 
FPL will be occupied as a part dataset, and with a FPL 
constructed for the last part database only the last part dataset 
has to be located in memory for the need of mining frequent 
itemsets. The complete FPL will not accommodated into 
memory. Single element node is located into memory each 
time. Once the FPL for the last part database still suits the 
memory, next time consider the last item node of local FPL as 
a second part database and build its equivalent second level 
FPL. For the second time, basically the last element node of 
this second level FPL has to be located into memory. This 
procedure can be extended until the present FPL can suitable 
in memory; any proficient storage based algorithms like FP-
growth [16], can be utilized for the purpose of mining frequent 
itemsets.  
 
An algorithm for the purpose of hierarchically partitioning the 
database and mining frequent itemsets is launched based on 
two algorithms. The Frequent Pattern List  Hierarchical 
Partitioning Database (FPL_HPDB), which hierarchically 
distributes the transaction database until the last sub database 
permits a memory resident data structure to be constructed. 
Any memory related mining frequent itemsets can be 
employed for FPL_HP-Mining mines frequent itemsets from 
the hierarchically partitioned databases. It is to be detected 
that when a memory resident FPL data structure can be built 
for the sub database.  

C. Step 3. Frequent Pattern mining and Association Rule 
Generation 

The frequent patterns and association rules are generated using 
a hybrid algorithm that combines the advantages of two 
popular algorithms, namely, Apriori and FP-Growth, which 
are modified to include temporal characteristics. The proposed 
hybrid algorithm that combines Temporal Apriori Algorithm 
(TAA) [12] and Temporal FP-Growth Algorithm (TFA). It is 
termed as Hybrid Apriori and FP-Tree algorithm for Temporal 
Database (HAFTD). The algorithm is applied to each sub-
partitions from FPL-HPDB of each partition P obtained using 
K-Means clustering algorithm shown in Fig. 2.  

3.1 Hybrid Apriori and FP-Tree Algorithm for Temporal Data 
(HAFTD)   

 
The HAFTD exploits the fact that any temporal database 
contains transactions that have same set of items, which if 
identified and correctly handled can provide multiple 
advantages such as, prune database without the generation of 
candidate itemset, reduce multiple database scan, efficient 
usage of  memory and improved computation. The hybrid 
algorithm has two main stages. The first stage identifies all 
maximal transactions (maximal frequent itemset) greater than 
min_supp and that are repeated in the database and gets all 
transactions that satisfied the Apriori property [10]. In the 
second stage, the pruned and reduced database is scanned 

again to find frequent 1-item set. All the other items which are 
not 1-frequent item set frequent are removed. Using the result, 
the FP-Tree is constructed. 

The temporal database along the minimum support 
(min_supp) obtained automatically using the procedure 
presented in step 3 is given as input to Stage 1 of HAFTD. 
The output of Stage 1 is given as input to the second Stage. 
Fig.3 presents the pseudocode of Stage 1 and Stage 2. 
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Fig 2. FPL_HPDB & FPL_HP Mining Algorithm 

 

 
 

Fig . 3.  HAFTD Algorithm 

D. Step 4. Positive & Negative Associative Rules 

The proposed HAFTD algorithm, identifies the positively 
associated rules. Identification of negative association 
provides valuable information and can improve the process of 
data analysis and interpretation. In the positive associations, 
associations between items exist in transactions. Inclusion of 
rules that reflect negative association between items can 
increase the overall accuracy of HAFTD. A negative 
association rule is X Y, where X and Y are items and X  
Y = .  
 
The algorithm identifies association rules that possess the 
negation of an item. The main here is to formulate positive 
and negative association rules by determining interesting 
itemsets (patterns). The proposed method modifies the 
support-confidence framework to include negative support and 
negative confidence [3]. A Hybrid Encoded Cuckoo Search 
(HECS) algorithm is incorporated to produce optimal 
association rules. The aim of Cuckoo Search is to replace a not 
good solution in the nests to use the new and possibly better 
solutions. Hybrid encoded cuckoo search functions in multiple 
levels of constraints with automatic calculation of negative 
minimum support value as well as the individual negative 
confidence value patterns.  The Positive and Negative 
Association Rule Discovery with HECS (PNHECS) presented 
in Fig.4 and HAFTD after inclusion of CSPNHE (Cuckoo 
Search Positive and Negative Hybrid Apriori Approach) is 
referred as PNHAFTD. 

Stage 1   
 

1. Read the records of the temporal database and calculate each 
transactions count of repetition (CR) and arrange in descending 
order of CR. Store the result as a 2-dimensional matrix, TCR. 

2. Discover Maximal transaction set (k-itemset) satisfied the 
condition CR  min_supp. In case, if the k-itemset count is less 
than min_supp, then the algorithm discover next (k-1) maximal 
itemsets. This step is repeated until the algorithm identifies all 
itemsets count that are greater than min_supp. If no such 
transactions are found then the algorithm proceeds to Stage 2, 
else it proceeds to step 3 of Stage 1. 

3. Based on Apriori property, subsets of Maximal Frequent 
Transactions (MFT) are identified as frequent.  

4. Remove all those transactions that contain frequent 1-itemsets 
which are not included in MFT.   

5. Construct the pruned database with all frequent itemsets  

Stage 2   
 

6. Discover the frequent 1-itemset and remove items which are 
not 1-itemset frequent. 

7. Build FP-Tree and generate association rules. 

 
FPL_HPDB (P, As, pl ,fileheader, parent _itemset) 
 
1. Scan the partition of transaction data to discovery all the 

frequent items and their occurrences. Let there be n frequent  
items and sort these frequent items in a list, denoted as F-items, 
in descending order of frequency.  

2. Scan Partition ‘P’ second time in order to produce a trimmed 
partition. Trimmed partitoin by keeping the frequent items and 
pruning the ‘Non frequent items’ and sorting the frequent items 
in their orders ‘F’ items for every transaction  

3. if Trimmed Partition can fit in memory then build an frequent 
pattern list for P and store in FPL with partilevel set to null. 

 else do initiate 
Create ‘N’ sub partitions as part Pi to part Pn by following 
steps . 
Store the file indicators  to these ‘N’ sub partitions into file 
header and store the partilevel and parent set into file 
header. 
Increment partilevel by one . 

 end if  
4. The number of transactions m in sub Pn  are countedand 

eliminate the last item for every  transaction in Pn. 

FPL_HP-Mining (fileheader, t) 

5. Call HP_FPL(sub-Pn, As, pl ,fileheader, parent _itemset  
{item n} :m) 

6. Take FPL and ite parent itemset (S) From fileheader and invoke 
FPL-mining (FPL,N,As,S) to find frequent itemsets 

7. Generate all frequent itemset from parent itemset of FPL(S) and 
then remove the last record from fileheader 

8. While Fileheader is contains itemset  do begin  
(1) Perform signature pruning and movement on the last sub-

partition in the inmost partition level and check the amount 
of sub-partition remaining in the inmost partition level. 

(2) If (only sub-Px) (for item x) then  
(i) Count its number of transaction  c and generate a 

frequent itemset by concatenating the parent itemset 
of sub-Px with item x ,with count of this frequent 
itemset set to c 

(ii) Generate a frequent itemset from the parent itemset 
of sub-Px. 

(iii) Delete the record for sub-Px from fileheader 
(3) Else 

(i) Fetch the last sub partition sub Py in the deepest 
partition level from fileheader, and find its parent 
itemset  

(ii) Count the number of transaction in sub partition Py 
for each transaction ‘Ix’ in sub partition Py, 
eliminate the last item to obtain the abbreviated sub-
partitions sub partition Py;  

(iii) Call procedure HP_FPL (sub-Py, As, fileheader, 
level_x+1,S {item n};m);  

9. Call procedure HP_FPL mining (Fileheader ,As); 

10. End  
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Fig.4. PNHECS algorithm 
 
The steps of the proposed PNHAFTD algorithm, is presented 
in Fig 5. 
 

 
 

Fig.5. Steps in PNHAFT 
 

E. Step 5. Rule Reduction Techniques 

To achieve a minimized association rule set, two rule 
reduction techniques is presented. The Support-Confidence 
based Algorithm (SCP) uses a rule pruning algorithm to 
remove irrelevant or unwanted rules that do not affect the 
classification performance. 
 
The Database Coverage Pruning (DCP) and Chi-Square 
Pruning (CSP) is integrated with the classification process and 
selects only those that produce positive classification results. 
This technique is performed as an optimization procedure after 
pruning termed as Multiple Projection Pruning Algorithm 
(M2PA). The M2PA is designed in a manner that combines 
three pruning algorithms to produce the optimal rule set 
without reducing the classification performance. The main 
objective of M2PA is to decrease number of association rules 
without degrading the performance of PNHAFTD.  

F. Step 6. Temporal Classification 
The optimization procedure applied after pruning is integrated 
in the design of the temporal associative classifier. The 
classification algorithm used in presented in Fig.6.  

Temporal Database 

Preprocess 

HAFTD  

Positive & Negative Association Rule Generation 

Population Generation 

Move Nests towards Best 
Cuckoo 

 
 

Temporal Support & 
Confidence Calculation 

Discovered Rules 

Input : N population size, m number of objectives, Niter  number of 
evaluations; Pir attribute probability in the rule , W1…Wn   
are N weight vectors; T is the number of weight vectors in 
the neighbourhood of each weight vector; δ parent solutions 
probability are designated; 

 
Initialize: Euclidean Distances is computed between the weight vectors 

and work out the T neighboring weight vectors to each 
weight vector.  

Step 1:  Sorting   

According to value-to-weight ratio 
 in descending order, a queue 

 of length  is formed 

 

Step 2: Initialization  

Generate m cuckoo nests randomly as given below. 

Calculate the fitness for each and determine . 
Set the generation counter G=1 and mutation parameter Pir. 
Apply new position updating formula of ICS for i=1..N. 

Stepi= 

worst
i

best
i irir 

;  Iri' = ji
best
i step*rir 

 

If  then 

 
Repair the illegal rules and optimize the legal rules according 

to value-to-weight ratio  in 

descending order, a queue  of length  is 
formed 

Repair Stage 

;  while  

if ) then  

orsi = 1; ; ;  
Optimize Stage        
for j=iton 

Tempc = Tempc + wjT; 

if then orsj = 1 else orsj = 0; 

computation is terminated. 
end for 
 

Step 3:  
Keep best attributes for positive and negative attribute 
association rules ;   
Rank the results and find the recent best solution 

 
G = G + 1 
 

Step 4 :  
End 
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Fig.6.  Classification Algorithm 

During the training phase, the association rules generated 
using the techniques mentioned in the previous sections, are 
used. This set of rules is denoted as R. During testing (denoted 
as O), the classification process searches the rule set for 
finding a class that is close to the new rule. The prediction 
puts O into a class that has the highest confidence amount. 
That is, the labelling of O is performed by attaching the test 
data to a class that most matches the rules generated.  

IV. RESULTS AND DISCUSSION 
They are Ozone data set, El Nino dataset, Forest Fires dataset 
and Stock Market dataset. Five performance metrics namely, 
precision, F-Measure, recall, accuracy and speed were 
considered in the experiments.  
 
In this experiment, ten-fold cross validation is used. The data 
set is divided into ten equal sizes. Nine data sets are used for 
training and one data set used for testing. All the algorithms 
are implemented using Java. 
 
The proposed algorithm HM2ACT compared with Hybrid 
Apriori and FP-Tree algorithm for Temporal Database with 
Temporal association rule classification  using Multiple 
Projection Pruning Algorithm (TM2PA). TM2PA integrates 
Database Coverage Pruning (DCP) and Chi-Square Pruning 
(CSP) with temporal association rule classification. 
 
Table I presents the precision, recall, f-measure values, while 
Table II shows the classification accuracy and speed 
algorithms. The results again proves temporal classification 
algorithm incorporated with 2-step classification has improved 
the classification accuracy with all the datasets.  
 
The proposed HM2ACT shows an efficiency gain of 0.79%, 
0.95%, 0.57% and 1.77% with respect to F-Measure and 
1.01%, 0.70%, 1.34% and 1.09% with respect to accuracy 
performance metric when compared with TM2PA while using 
with Ozone, El Nino, Forest Fires and Stock Market datasets 
respectively. 
 
The speed efficiency gain obtained by HM2ACT is as high as 
20.92%, 23.57%, 26.16% and 26.36% when compared to 
TM2PA with the four datasets respectively.  
 

Table I. Analysis of classification algorithms  (%) 
 

Dataset 
Precision Recall F-Measure 

TM2PA HM2ACT TM2PA HM2ACT TM2PA HM2ACT 

Ozone 85.24 86.28 85.17 85.48 85.20 85.88 

El Nino 83.27 84.48 82.21 82.60 82.74 83.53 
Forest 
Fires 88.29 89.01 90.24 90.54 89.25 89.77 

Stock 
Market 86.36 87.58 84.24 86.08 85.29 86.82 

 
Table II. Analysis of classification algorithms – Accuracy (%) 

and Speed (Seconds) 
 

Dataset 
Accuracy Speed 

TM2PA HM2ACT TM2PA HM2ACT 
Ozone 95.82 96.80 6.55 5.18 

El Nino 90.21 90.85 7.34 5.61 
Forest Fires 96.68 97.99 10.74 7.93 

Stock Market 95.34 96.39 7.36 5.42 
 
The performance trend envisaged by the proposed algorithms 
is similar with all the four datasets, showing that the problem 
of scalability is also resolved.  
 
The algorithm extracts the temporal association rules for the 
temporal interval of 4 for the support measures and is shown 
in the table I and II.  
 
The results shown above prove the fact that the proposed 
HM2ACT algorithm produces quality rules and classification 
performance. It meets the two extremities, namely, high 
accuracy and high speed, which fulfils the objectives. 
Moreover, the HM2ACT algorithm is also parameter-less and 
the thresholds required are automatically calculated. With all 
these advantages, it is safe to use the proposed HM2ACT 
algorithm and to classify temporal data and gather accurate 
knowledge from them. 

V. CONCLUSION 
Temporal Association rule mining is a variant of the 
association mining which discoveries association between 
items with specific time intervals. The knowledge discovered 
using temporal mining can be used in business, scientific and 
engineering applications. The main objective of the proposed 
algorithm is to analyze and implement algorithms that solve 
the problems of mining knowledge from huge sized temporal 
databases using association rule reduction techniques and 
improved associative classification techniques. It also solve 
the issues of conventional Apriori and FP-Growth algorithms 
and design enhanced temporal association rule classification 

Sp = NULL; 
Every rule  r in R  

if (rule  O) {Increment c} 
if (c == 1) fr.confidence = r.confidence 

Sp = Sp  ru 
else if (ru.confidence is greater than fr.confidence) Sp = Sp  ru 
 else exit 
 end if 

Split Sp in sub group S1, S2, …, Sn 
Each sub group S1, S2, …, Sn 

total the confidences and divide by the number of  rules in Sk 
Predict class for ’O‘  

 



2016 IEEE Eight International Conference on Advanced Computing  
 
 

 
53 

 

algorithm. The results produced prove that the HM2ACT can 
be safely used by businesses to extract accurate knowledge 
from temporal databases. 
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