
2016 IEEE Eight International Conference on Advanced Computing

978-1-5090-5888-4/16/$31.00@2016 IEEE

47

Development of an efficient Association Rule
Classifier with Temporal characteristics and

Hierarchical partitioning

Mini T V
Department of Computer Science
Sacred Heart College Chalakudy

Trissur, India
sistermiranto@gmail.com

R Nedunchezhian
Department of CSE

Coimbatore Institute of Technology
Coimbatore, India

rajuchezhian@gmail.com

V Vijayakumar

Department of Computer Science
S.N.R. Sons College
Coimbatore, India

veluvijay20@gmail.com

Abstract— Due to fast growth of temporal databases has made
temporal data mining mandatory for knowledge discovery. Temporal
association rule classification, a sub-task of temporal mining,
integrates association rule mining and classification. The growth and
increased complexities in temporal databases have necessitated this
research work to propose techniques that enhance the process of
associative mining and classification. Hierarchical partitioning with
frequent pattern list with multiple projection pruning and 2-Step
Associative rule Classification with Temporal characteristic
(HM2ACT) is proposed to solve the issues and designed enhanced
temporal association rule classification algorithm. The experimental
results demonstrated that the proposed algorithm produces high
quality rules and improved classification performance.

Keywords— Temporal Association Rule Mining; Association
Rule Classification; Hierarchical Partitioning.

I. INTRODUCTION
Advances in information technology have enhanced the
collection, storing and processing of various sources of data in
recent decades. Data mining techniques has been applied in
various fields like Satellite research, Health care and Market
research. Many researchers discussed about the numerous data
mining techniques and its applications. Temporal databases
such as stock market and manufacturing information,
multimedia and web information incorporate the time to
produce high-level builds that is useful in temporal
applications.

Temporal database mining discovers knowledge and patterns
from temporal databases which includes time characteristics in
the database. The temporal database consists of many
significance and complication of the time attribute. A lot of
diverse kinds of patterns are of exists in the temporal mining.

Association rule mining is the most important data mining
technique, the pattern identification task works with patterns
(native behavior of the database) and frequent patterns

(patterns that happen recurrently in the dataset). The
Association rule mining methods can be grouped into two
types, such as the candidate generation and testing method and
the pattern growth approach. Examples of the candidate
generation and testing approach include algorithms proposed
by Agrawal & Srikant [1], Agrawal et al. [2], El-Hajj et al.[6],
Savasere et al. [17], among which Apriori is the most
frequently used algorithm. Candidate generation and testing
approach may take a large overhead of Input and output, when
large number of frequent patterns occurs. The pattern growth
method comprises FP-Growth, Tree-projection and H-Mine
[13]. A frequent pattern growth approach uses the FP-Tree to
preserve the database structure, instead of creating candidates
in each and every time. FP Growth approach mines the FP-
Tree recurrently by building conditional trees that are of the
similar order of magnitude in amount as the frequent pattern.
Many researcher have compared the performance of these
candidate generate and tests and the pattern growth
approaches are Liu et al. [9], Sengar et al. [18] and Ratre et al.
[16]. According to their results, the pattern growth approach is
more effective. But the approach requires extra memory space
to store the transitional data structure. However, this huge
construction of conditional trees makes these algorithms not
scalable to mine large datasets.

The aim of the temporal associative classification is to build a
temporal classifier which can predict the classes of test data
objects. A number of works have provided the evidence that
associative classification algorithms are able to extract
classifiers competitive with those formed by decision trees
rule induction and probabilistic procedures. The associative
temporal classification technique uses temporal support and
temporal confidence measures to evaluate the temporal rule
quality.

The remainder of this paper is structured as follows. Section 2
introduces the review of literature of association rule based

2016 IEEE Eight International Conference on Advanced Computing

48

classifier. The proposed methodology is presented in Section
3. Section 4 shows the results and discussion, and Section 5
concludes this paper.

II. REVIEW OF LITERATURE

The performance of frequent itemsets mining and association
rule generation depends on two parameters, min_conf and
min_sup, which are user-specified. Correct selection of these
two parameters is critical and is highly dependent on the
nature of database [9], [16], [18]. In general, a high min_sup
will result with very few association rules, while a low
min_sup will generate very high association rules and both
these situations degrade the performance of associative
mining. This difficulty brought forward a series of automated
methods for the calculation of min_sup and min_conf. More
often, the optimal values for these parameters are selected
after repeated runs of the algorithms and choose the set which
produces best results. This process is time consuming and
hence it is not efficient. Pyun & Yun [14] , Quang et al. [15]
have suggested the use of mine-top-k frequent patterns for
solving this issue. Again, the correct specification of k is very
important and is dependent on the user. Thus, in order to
design an efficient frequent pattern mining algorithm, it is
necessary to have optimal min_sup and min_conf values.

The major drawback while using associative rule classification
is the huge quantity of rules generated. In general, the
associative rule classification algorithm uses only one pruning
technique before actual classification with the purpose of
decrease the number of rules. These techniques can be applied
either during association rule generation (pre pruning
approach) or after association rule generation (post pruning
approach).

Mandeep Mittal et al [11] proposed a temporal association rule
mining method to discover relationships between items which
satisfy certain timing constraints. Batal I et al [4] presented
the Minimal Predictive Temporal Patterns framework to
produce a lesser set of predictive and non-spurious patterns.
Liu et al. [7] and Liu et al. [8] proposed a database coverage
pruning technique is to improve the process of association rule
classification which give assurance that each rule can at least
classify one training instance correctly.

Detecting correlations in data that possess a time component is
the major aim of temporal association rule mining. As
extensions to the traditional [2] method numerous classes of
temporal association rule generation methods have been
proposed. Chang et al. [5] discover a novel model of mining
universal temporal association rules from huge databases
where the showing periods of the items are permitted to be
dissimilar from one another.

The major concerns of temporal association rule classifier are
(i). Fails with huge sized temporal databases (Scalability
issue), (ii). Selection of two thresholds, min_supp and
min_conf, (iii). Generates huge number of association rules,
(iv). Satisfy the two important factors of classification,
namely, accuracy and speed.

III. METHODOLOGY
The proposed algorithm, Hierarchical partitioning with
frequent pattern list with multiple projection pruning and 2-
Step Associative rule Classification with Temporal
characteristics (HM2ACT) aims to solve these concerns using
an amalgamation of techniques, namely, clustering, and
automatic estimation of parameters, rule reduction and
classification. The proposed method consists of six steps as
explained below.

A. Step 1. Pre-processing: Automatic Estimation of
Parameters

The pre-processing performs two tasks, namely, partitioning
the dataset and automatic estimation of the two parameters,
min_supp and min_conf. Temporal Associative Rule
Classification (TARC) is proposed for the parameter selection
and provided an automated method to resolve the difficult of
user supplied minimum support and minimum confidence
thresholds using polynomial function. The Automated
Minimum Support Estimation Method (AMSEM) procedural
steps are presented in Fig.1.

Fig 1. Steps in Automated Minimum Support Estimation Method

B. Step 2. Hierarchical Partitional with FrequentPattern List
(HP-FPL)

The HP-FPL algorithm was designed to address the issue of
scalability with frequent pattern mining algorithms. A detailed
description HP-FPL can be found in Tseng et al. [20].
Frequent Pattern List Construction and Frequent Pattern List
Mining are used for generation of frequent patterns and
mining from the FPL, respectively [19].

For each partitions of the temporal database repeat the following
steps
 Calculate the support of each item in Pi
 Estimate the minimum and maximum support
 Initial min_sup (P) = Average support (As)
 Estimate min_conf using lift measure (confidence lift)
 Group itemsets in P according to their length
 Calculate cumulative support as product of support of each

itemset group
 Estimate collective confidence measure using min_sup and

collective support of each itemset group
 Identify itemset group as frequent if and only if cumulative

support min(min_sup(items)) in itemset group.

2016 IEEE Eight International Conference on Advanced Computing

49

In the mining process, the last part dataset is essential for
mining frequent itemsets. Obviously, each item node of the
FPL will be occupied as a part dataset, and with a FPL
constructed for the last part database only the last part dataset
has to be located in memory for the need of mining frequent
itemsets. The complete FPL will not accommodated into
memory. Single element node is located into memory each
time. Once the FPL for the last part database still suits the
memory, next time consider the last item node of local FPL as
a second part database and build its equivalent second level
FPL. For the second time, basically the last element node of
this second level FPL has to be located into memory. This
procedure can be extended until the present FPL can suitable
in memory; any proficient storage based algorithms like FP-
growth [16], can be utilized for the purpose of mining frequent
itemsets.

An algorithm for the purpose of hierarchically partitioning the
database and mining frequent itemsets is launched based on
two algorithms. The Frequent Pattern List Hierarchical
Partitioning Database (FPL_HPDB), which hierarchically
distributes the transaction database until the last sub database
permits a memory resident data structure to be constructed.
Any memory related mining frequent itemsets can be
employed for FPL_HP-Mining mines frequent itemsets from
the hierarchically partitioned databases. It is to be detected
that when a memory resident FPL data structure can be built
for the sub database.

C. Step 3. Frequent Pattern mining and Association Rule
Generation

The frequent patterns and association rules are generated using
a hybrid algorithm that combines the advantages of two
popular algorithms, namely, Apriori and FP-Growth, which
are modified to include temporal characteristics. The proposed
hybrid algorithm that combines Temporal Apriori Algorithm
(TAA) [12] and Temporal FP-Growth Algorithm (TFA). It is
termed as Hybrid Apriori and FP-Tree algorithm for Temporal
Database (HAFTD). The algorithm is applied to each sub-
partitions from FPL-HPDB of each partition P obtained using
K-Means clustering algorithm shown in Fig. 2.

3.1 Hybrid Apriori and FP-Tree Algorithm for Temporal Data
(HAFTD)

The HAFTD exploits the fact that any temporal database
contains transactions that have same set of items, which if
identified and correctly handled can provide multiple
advantages such as, prune database without the generation of
candidate itemset, reduce multiple database scan, efficient
usage of memory and improved computation. The hybrid
algorithm has two main stages. The first stage identifies all
maximal transactions (maximal frequent itemset) greater than
min_supp and that are repeated in the database and gets all
transactions that satisfied the Apriori property [10]. In the
second stage, the pruned and reduced database is scanned

again to find frequent 1-item set. All the other items which are
not 1-frequent item set frequent are removed. Using the result,
the FP-Tree is constructed.

The temporal database along the minimum support
(min_supp) obtained automatically using the procedure
presented in step 3 is given as input to Stage 1 of HAFTD.
The output of Stage 1 is given as input to the second Stage.
Fig.3 presents the pseudocode of Stage 1 and Stage 2.

2016 IEEE Eight International Conference on Advanced Computing

50

Fig 2. FPL_HPDB & FPL_HP Mining Algorithm

Fig . 3. HAFTD Algorithm

D. Step 4. Positive & Negative Associative Rules

The proposed HAFTD algorithm, identifies the positively
associated rules. Identification of negative association
provides valuable information and can improve the process of
data analysis and interpretation. In the positive associations,
associations between items exist in transactions. Inclusion of
rules that reflect negative association between items can
increase the overall accuracy of HAFTD. A negative
association rule is X Y, where X and Y are items and X
Y = .

The algorithm identifies association rules that possess the
negation of an item. The main here is to formulate positive
and negative association rules by determining interesting
itemsets (patterns). The proposed method modifies the
support-confidence framework to include negative support and
negative confidence [3]. A Hybrid Encoded Cuckoo Search
(HECS) algorithm is incorporated to produce optimal
association rules. The aim of Cuckoo Search is to replace a not
good solution in the nests to use the new and possibly better
solutions. Hybrid encoded cuckoo search functions in multiple
levels of constraints with automatic calculation of negative
minimum support value as well as the individual negative
confidence value patterns. The Positive and Negative
Association Rule Discovery with HECS (PNHECS) presented
in Fig.4 and HAFTD after inclusion of CSPNHE (Cuckoo
Search Positive and Negative Hybrid Apriori Approach) is
referred as PNHAFTD.

Stage 1

1. Read the records of the temporal database and calculate each
transactions count of repetition (CR) and arrange in descending
order of CR. Store the result as a 2-dimensional matrix, TCR.

2. Discover Maximal transaction set (k-itemset) satisfied the
condition CR min_supp. In case, if the k-itemset count is less
than min_supp, then the algorithm discover next (k-1) maximal
itemsets. This step is repeated until the algorithm identifies all
itemsets count that are greater than min_supp. If no such
transactions are found then the algorithm proceeds to Stage 2,
else it proceeds to step 3 of Stage 1.

3. Based on Apriori property, subsets of Maximal Frequent
Transactions (MFT) are identified as frequent.

4. Remove all those transactions that contain frequent 1-itemsets
which are not included in MFT.

5. Construct the pruned database with all frequent itemsets

Stage 2

6. Discover the frequent 1-itemset and remove items which are
not 1-itemset frequent.

7. Build FP-Tree and generate association rules.

FPL_HPDB (P, As, pl ,fileheader, parent _itemset)

1. Scan the partition of transaction data to discovery all the

frequent items and their occurrences. Let there be n frequent
items and sort these frequent items in a list, denoted as F-items,
in descending order of frequency.

2. Scan Partition ‘P’ second time in order to produce a trimmed
partition. Trimmed partitoin by keeping the frequent items and
pruning the ‘Non frequent items’ and sorting the frequent items
in their orders ‘F’ items for every transaction

3. if Trimmed Partition can fit in memory then build an frequent
pattern list for P and store in FPL with partilevel set to null.

 else do initiate
Create ‘N’ sub partitions as part Pi to part Pn by following
steps .
Store the file indicators to these ‘N’ sub partitions into file
header and store the partilevel and parent set into file
header.
Increment partilevel by one .

 end if
4. The number of transactions m in sub Pn are countedand

eliminate the last item for every transaction in Pn.

FPL_HP-Mining (fileheader, t)

5. Call HP_FPL(sub-Pn, As, pl ,fileheader, parent _itemset
{item n} :m)

6. Take FPL and ite parent itemset (S) From fileheader and invoke
FPL-mining (FPL,N,As,S) to find frequent itemsets

7. Generate all frequent itemset from parent itemset of FPL(S) and
then remove the last record from fileheader

8. While Fileheader is contains itemset do begin
(1) Perform signature pruning and movement on the last sub-

partition in the inmost partition level and check the amount
of sub-partition remaining in the inmost partition level.

(2) If (only sub-Px) (for item x) then
(i) Count its number of transaction c and generate a

frequent itemset by concatenating the parent itemset
of sub-Px with item x ,with count of this frequent
itemset set to c

(ii) Generate a frequent itemset from the parent itemset
of sub-Px.

(iii) Delete the record for sub-Px from fileheader
(3) Else

(i) Fetch the last sub partition sub Py in the deepest
partition level from fileheader, and find its parent
itemset

(ii) Count the number of transaction in sub partition Py
for each transaction ‘Ix’ in sub partition Py,
eliminate the last item to obtain the abbreviated sub-
partitions sub partition Py;

(iii) Call procedure HP_FPL (sub-Py, As, fileheader,
level_x+1,S {item n};m);

9. Call procedure HP_FPL mining (Fileheader ,As);

10. End

2016 IEEE Eight International Conference on Advanced Computing

51

Fig.4. PNHECS algorithm

The steps of the proposed PNHAFTD algorithm, is presented
in Fig 5.

Fig.5. Steps in PNHAFT

E. Step 5. Rule Reduction Techniques

To achieve a minimized association rule set, two rule
reduction techniques is presented. The Support-Confidence
based Algorithm (SCP) uses a rule pruning algorithm to
remove irrelevant or unwanted rules that do not affect the
classification performance.

The Database Coverage Pruning (DCP) and Chi-Square
Pruning (CSP) is integrated with the classification process and
selects only those that produce positive classification results.
This technique is performed as an optimization procedure after
pruning termed as Multiple Projection Pruning Algorithm
(M2PA). The M2PA is designed in a manner that combines
three pruning algorithms to produce the optimal rule set
without reducing the classification performance. The main
objective of M2PA is to decrease number of association rules
without degrading the performance of PNHAFTD.

F. Step 6. Temporal Classification
The optimization procedure applied after pruning is integrated
in the design of the temporal associative classifier. The
classification algorithm used in presented in Fig.6.

Temporal Database

Preprocess

HAFTD

Positive & Negative Association Rule Generation

Population Generation

Move Nests towards Best
Cuckoo

Temporal Support &
Confidence Calculation

Discovered Rules

Input : N population size, m number of objectives, Niter number of
evaluations; Pir attribute probability in the rule , W1…Wn
are N weight vectors; T is the number of weight vectors in
the neighbourhood of each weight vector; δ parent solutions
probability are designated;

Initialize: Euclidean Distances is computed between the weight vectors

and work out the T neighboring weight vectors to each
weight vector.

Step 1: Sorting

According to value-to-weight ratio
 in descending order, a queue

 of length is formed

Step 2: Initialization

Generate m cuckoo nests randomly as given below.

Calculate the fitness for each and determine .
Set the generation counter G=1 and mutation parameter Pir.
Apply new position updating formula of ICS for i=1..N.

Stepi=

worst
i

best
i irir

; Iri' = ji
best
i step*rir

If then

Repair the illegal rules and optimize the legal rules according

to value-to-weight ratio in

descending order, a queue of length is
formed

Repair Stage

; while

if) then

orsi = 1; ; ;
Optimize Stage
for j=iton

Tempc = Tempc + wjT;

if then orsj = 1 else orsj = 0;

computation is terminated.
end for

Step 3:
Keep best attributes for positive and negative attribute
association rules ;
Rank the results and find the recent best solution

G = G + 1

Step 4 :
End

2016 IEEE Eight International Conference on Advanced Computing

52

Fig.6. Classification Algorithm

During the training phase, the association rules generated
using the techniques mentioned in the previous sections, are
used. This set of rules is denoted as R. During testing (denoted
as O), the classification process searches the rule set for
finding a class that is close to the new rule. The prediction
puts O into a class that has the highest confidence amount.
That is, the labelling of O is performed by attaching the test
data to a class that most matches the rules generated.

IV. RESULTS AND DISCUSSION
They are Ozone data set, El Nino dataset, Forest Fires dataset
and Stock Market dataset. Five performance metrics namely,
precision, F-Measure, recall, accuracy and speed were
considered in the experiments.

In this experiment, ten-fold cross validation is used. The data
set is divided into ten equal sizes. Nine data sets are used for
training and one data set used for testing. All the algorithms
are implemented using Java.

The proposed algorithm HM2ACT compared with Hybrid
Apriori and FP-Tree algorithm for Temporal Database with
Temporal association rule classification using Multiple
Projection Pruning Algorithm (TM2PA). TM2PA integrates
Database Coverage Pruning (DCP) and Chi-Square Pruning
(CSP) with temporal association rule classification.

Table I presents the precision, recall, f-measure values, while
Table II shows the classification accuracy and speed
algorithms. The results again proves temporal classification
algorithm incorporated with 2-step classification has improved
the classification accuracy with all the datasets.

The proposed HM2ACT shows an efficiency gain of 0.79%,
0.95%, 0.57% and 1.77% with respect to F-Measure and
1.01%, 0.70%, 1.34% and 1.09% with respect to accuracy
performance metric when compared with TM2PA while using
with Ozone, El Nino, Forest Fires and Stock Market datasets
respectively.

The speed efficiency gain obtained by HM2ACT is as high as
20.92%, 23.57%, 26.16% and 26.36% when compared to
TM2PA with the four datasets respectively.

Table I. Analysis of classification algorithms (%)

Dataset
Precision Recall F-Measure

TM2PA HM2ACT TM2PA HM2ACT TM2PA HM2ACT

Ozone 85.24 86.28 85.17 85.48 85.20 85.88

El Nino 83.27 84.48 82.21 82.60 82.74 83.53
Forest
Fires 88.29 89.01 90.24 90.54 89.25 89.77

Stock
Market 86.36 87.58 84.24 86.08 85.29 86.82

Table II. Analysis of classification algorithms – Accuracy (%)

and Speed (Seconds)

Dataset
Accuracy Speed

TM2PA HM2ACT TM2PA HM2ACT
Ozone 95.82 96.80 6.55 5.18

El Nino 90.21 90.85 7.34 5.61
Forest Fires 96.68 97.99 10.74 7.93

Stock Market 95.34 96.39 7.36 5.42

The performance trend envisaged by the proposed algorithms
is similar with all the four datasets, showing that the problem
of scalability is also resolved.

The algorithm extracts the temporal association rules for the
temporal interval of 4 for the support measures and is shown
in the table I and II.

The results shown above prove the fact that the proposed
HM2ACT algorithm produces quality rules and classification
performance. It meets the two extremities, namely, high
accuracy and high speed, which fulfils the objectives.
Moreover, the HM2ACT algorithm is also parameter-less and
the thresholds required are automatically calculated. With all
these advantages, it is safe to use the proposed HM2ACT
algorithm and to classify temporal data and gather accurate
knowledge from them.

V. CONCLUSION
Temporal Association rule mining is a variant of the
association mining which discoveries association between
items with specific time intervals. The knowledge discovered
using temporal mining can be used in business, scientific and
engineering applications. The main objective of the proposed
algorithm is to analyze and implement algorithms that solve
the problems of mining knowledge from huge sized temporal
databases using association rule reduction techniques and
improved associative classification techniques. It also solve
the issues of conventional Apriori and FP-Growth algorithms
and design enhanced temporal association rule classification

Sp = NULL;
Every rule r in R

if (rule O) {Increment c}
if (c == 1) fr.confidence = r.confidence

Sp = Sp ru
else if (ru.confidence is greater than fr.confidence) Sp = Sp ru
 else exit
 end if

Split Sp in sub group S1, S2, …, Sn
Each sub group S1, S2, …, Sn

total the confidences and divide by the number of rules in Sk
Predict class for ’O‘

2016 IEEE Eight International Conference on Advanced Computing

53

algorithm. The results produced prove that the HM2ACT can
be safely used by businesses to extract accurate knowledge
from temporal databases.

References
[1] Agrawal R and Srikant, R “Fast algorithms for mining association rules

in large databases,” In Proceedings of the 20th International Conference
on Very Large Data Bases, Chille, pp. 487-499, 1994.

[2] Agrawal R, Imielinski T and Swami A, “Database mining: A
performance perspective”, IEEE Transactions on Knowledge and Data
Engineering, Volume. 5, No. 6, pp.914-925, 1993.

[3] Ahn K.I. and Kim J.Y., “Efficient mining of frequent itemsets and a
measure of interest for association rule mining”, Journal of Information
& Knowledge Management, Volume.3, No.03, pp.245-257, 2004.

[4] Batal I, Valizadegan H, Cooper GF, Hauskrecht M., “A Temporal
Pattern Mining Approach for Classifying Electronic Health Record
Data,” ACM Transactions on Intelligent Systems and Technology,
Volume .4, Issue.4, 2013.

[5] Chang C.Y., Chen M.S., and Lee C.H., “Mining General Temporal
Association Rules for Items with Different Exhibition Periods”,
Proceedings of the IEEE International Conference on Data Mining,
Japan, pp.59-66, 2002.

[6] El-Hajj M., and Zaïane O.R., “COFI Approach for Mining Frequent
Itemsets Revisited”, 9th ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery, France, pp. 70-75, 2004.

[7] Li W., Han J. and Pei J., “CMAR: Accurate and efficient classification
based on multiple class-association rules”, IEEE International
Conference on Data Mining, CA, pp. 369–376, 2001.

[8] Liu B., Hsu W. and Ma Y., “Mining association rules with multiple
minimum supports”, Proceedings of fifth SIGKDD International
Conference on Knowledge Discovery and Data Mining, California,
pp.337-341,1999.

[9] Liu B., Ma Y., Wong C.K. and Yu P.S., “Scoring the Data Using
Association Rules”, Applied Intelligence, Volume.18, No. 2, pp. 119-
135, 2003.

[10] Mahmood N., Burney A. and Ahsan K., “A Logical Temporal Relational
Data Model”, International Journal of Computer Science Issues,
Volume. 7, No. 1, pp. 1-9, 2010.

[11] Mandeep Mittal, Sarla Pareek, Reshu Agarwal, “Loss Profit Estimation
Using Temporal Association Rule Mining,” Management Science
Letters, Volume. 5 Issue. 2 pp. 167-174 , 2015.

[12] Motwani B.S., Ullman R. and Tsur J.S., “Dynamic Itemset Counting
and Implication Rules for Market Basket Data”, In Proceeding of ACM
SIGMOD, pp. 255-264,1997.

[13] Pei J., Han J. and Lu H., “H-Mine: Hyper-structure mining of frequent
patterns in large databases”, IEEE International Conference on Data
Mining, pp. 441–448, 2001.

[14] Pyun G. and Yun U., “Mining top-k frequent patterns with combination
reducing techniques”, Applied Intelligence, Volume 41, pp. 76-98, 2014.

[15] Quang T.M., Oyanagi K. and Yamazaki K., “ExMiner: An Efficient
Algorithm for Mining Top-K Frequent Patterns”, Advanced Data
Mining and Applications, Lecture Notes in Computer Science,
Volume:4093, pp. 436-447, 2006.

[16] Ratre S.U. and Gupta R., “An Efficient Technique for Sequential
Pattern Mining”, International Journal of Advanced Research in
Computer Science and Software Engineering, Volume 3, Number.3, pp.
377-379, 2013.

[17] Savasere A., Omiecinski E. and Navathe S., “An efficient algorithm for
mining association rules in large databases”, Proceeding of the 1995
International Conference on Very Large Databases, Switzerland, pp.
432–443, 1995.

[18] Sengar P., Lachhwani B. and Barot M., “Discovering Frequent Patterns
Mining Procedures”, International Journal of Innovative Technology and
Exploring Engineering, Volume. 2, No. 2, pp. 97-100, 2013.[14]

[19] Tseng F.C., “An adaptive approach to mining frequent itemsets
efficiently”, Expert Systems with Applications, Vol.39, pp.13166–
13172, 2012.

[20] Tseng F.C., “Mining frequent itemsets in large databases: The
hierarchical partitioning approach”, Expert Systems with Applications,
Volume. 40, No. 5, pp. 1654-1661, 2013.

